SurgeryLLM: a retrieval-augmented generation large language model framework for surgical decision support and workflow enhancement

被引:0
|
作者
Ong, Chin Siang [1 ,2 ]
Obey, Nicholas T. [1 ]
Zheng, Yanan [3 ]
Cohan, Arman [3 ,4 ]
Schneider, Eric B. [1 ]
机构
[1] Department of Surgery, Yale School of Medicine, New Haven,CT, United States
[2] Harvard T.H. Chan School of Public Health, Boston,MA, United States
[3] Department of Computer Science, Yale University, New Haven,CT, United States
[4] Wu Tsai Institute, Yale University, New Haven,CT, United States
关键词
Modeling languages;
D O I
10.1038/s41746-024-01391-3
中图分类号
学科分类号
摘要
SurgeryLLM, a large language model framework using Retrieval Augmented Generation demonstrably incorporated domain-specific knowledge from current evidence-based surgical guidelines when presented with patient-specific data. The successful incorporation of guideline-based information represents a substantial step toward enabling greater surgeon efficiency, improving patient safety, and optimizing surgical outcomes. © The Author(s) 2024.
引用
收藏
相关论文
共 50 条
  • [31] Quantitative Evaluation of Using Large Language Models and Retrieval-Augmented Generation in Computer Science Education
    Wang, Kevin Shukang
    Lawrence, Ramon
    PROCEEDINGS OF THE 56TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, SIGCSE TS 2025, VOL 2, 2025, : 1183 - 1189
  • [32] Facilitating university admission using a chatbot based on large language models with retrieval-augmented generation
    Chen, Zheng
    Zou, Di
    Xie, Haoran
    Lou, Huajie
    Pang, Zhiyuan
    EDUCATIONAL TECHNOLOGY & SOCIETY, 2024, 27 (04): : 454 - 470
  • [33] Optimized interaction with Large Language Models: A practical guide to Prompt Engineering and Retrieval-Augmented Generation
    Fink, Anna
    Rau, Alexander
    Kotter, Elmar
    Bamberg, Fabian
    Russe, Maximilian Frederik
    RADIOLOGIE, 2025,
  • [34] Quantitative Evaluation of Using Large Language Models and Retrieval-Augmented Generation in Computer Science Education
    Wang, Kevin Shukang
    Lawrence, Ramon
    PROCEEDINGS OF THE 56TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, SIGCSE TS 2025, VOL 1, 2025, : 1183 - 1189
  • [35] CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models
    Lyu, Yuanjie
    Li, Zhiyu
    Niu, Simin
    Xiong, Feiyu
    Tang, Bo
    Wang, Wenjin
    Wu, Hao
    Liu, Huanyong
    Xu, Tong
    Chen, Enhong
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2025, 43 (02)
  • [36] Optimierte Interaktion mit Large Language ModelsPraxisorientierter Leitfaden zu Prompt Engineering und Retrieval-Augmented GenerationOptimized interaction with Large Language ModelsA practical guide to Prompt Engineering and Retrieval-Augmented Generation
    Anna Fink
    Alexander Rau
    Elmar Kotter
    Fabian Bamberg
    Maximilian Frederik Russe
    Die Radiologie, 2025, 65 (4) : 235 - 242
  • [37] Advancing Cyber Incident Timeline Analysis Through Retrieval-Augmented Generation and Large Language Models
    Loumachi, Fatma Yasmine
    Ghanem, Mohamed Chahine
    Ferrag, Mohamed Amine
    COMPUTERS, 2025, 14 (02)
  • [38] Building a Coding Assistant via the Retrieval-Augmented Language Model
    Li, Xinze
    Wang, Hanbin
    Liu, Zhenghao
    Yu, Shi
    Wang, Shuo
    Yan, Yukun
    Fu, Yukai
    Gu, Yu
    Yu, Ge
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2025, 43 (02)
  • [39] OG-RAG: ONTOLOGY-GROUNDED RETRIEVAL-AUGMENTED GENERATION FOR LARGE LANGUAGE MODELS
    Sharma, Kartik
    Kumar, Peeyush
    Li, Yunqing
    arXiv,
  • [40] Leveraging Retrieval-Augmented Generation for Reliable Medical Question Answering Using Large Language Models
    Kharitonova, Ksenia
    Perez-Fernandez, David
    Gutierrez-Hernando, Javier
    Gutierrez-Fandino, Asier
    Callejas, Zoraida
    Griol, David
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT II, HAIS 2024, 2025, 14858 : 141 - 153