Deep learning for early diagnosis of oral cancer via smartphone and DSLR image analysis: a systematic review

被引:1
|
作者
Thakuria, Tapabrat [1 ,2 ]
Rahman, Taibur [1 ,2 ]
Mahanta, Deva Raj [1 ,2 ]
Khataniar, Sanjib Kumar [3 ]
Goswami, Rahul Dev [3 ]
Rahman, Tashnin [4 ]
Mahanta, Lipi B. [1 ,2 ]
机构
[1] Inst Adv Study Sci & Technol, Math & Computat Sci Div, Gauhati 781035, Assam, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad, India
[3] Reg Dent Coll, Gauhati, India
[4] Dr B Borooah Canc Inst, Dept Head & Neck Oncol, Gauhati, India
关键词
Oral cancer; deep learning; convolutional neural network (CNN); artificial intelligence (AI); smartphone device; CLASSIFICATION;
D O I
10.1080/17434440.2024.2434732
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
IntroductionDiagnosing oral cancer is crucial in healthcare, with technological advancements enhancing early detection and outcomes. This review examines the impact of handheld AI-based tools, focusing on Convolutional Neural Networks (CNNs) and their advanced architectures in oral cancer diagnosis.MethodsA comprehensive search across PubMed, Scopus, Google Scholar, and Web of Science identified papers on deep learning (DL) in oral cancer diagnosis using digital images. The review, registered with PROSPERO, employed PRISMA and QUADAS-2 for search and risk assessment, with data analyzed through bubble and bar charts.ResultsTwenty-five papers were reviewed, highlighting classification, segmentation, and object detection as key areas. Despite challenges like limited annotated datasets and data imbalance, models such as DenseNet121, VGG19, and EfficientNet-B0 excelled in binary classification, while EfficientNet-B4, Inception-V4, and Faster R-CNN were effective for multiclass classification and object detection. Models achieved up to 100% precision, 99% specificity, and 97.5% accuracy, showcasing AI's potential to improve diagnostic accuracy. Combining datasets and leveraging transfer learning enhances detection, particularly in resource-limited settings.ConclusionHandheld AI tools are transforming oral cancer diagnosis, with ethical considerations guiding their integration into healthcare systems. DL offers explainability, builds trust in AI-driven diagnoses, and facilitates telemedicine integration.
引用
收藏
页码:1189 / 1204
页数:16
相关论文
共 50 条
  • [31] Diagnostic performance of deep learning in ultrasound diagnosis of breast cancer: a systematic review
    Qing Dan
    Ziting Xu
    Hannah Burrows
    Jennifer Bissram
    Jeffrey S. A. Stringer
    Yingjia Li
    npj Precision Oncology, 8
  • [32] Insight into deep learning for glioma IDH medical image analysis: A systematic review
    Lv, Qingqing
    Liu, Yihao
    Sun, Yingnan
    Wu, Minghua
    MEDICINE, 2024, 103 (07) : E37150
  • [33] The value of machine learning approaches in the diagnosis of early gastric cancer: a systematic review and meta-analysis
    Yiheng Shi
    Haohan Fan
    Li Li
    Yaqi Hou
    Feifei Qian
    Mengting Zhuang
    Bei Miao
    Sujuan Fei
    World Journal of Surgical Oncology, 22
  • [34] The value of machine learning approaches in the diagnosis of early gastric cancer: a systematic review and meta-analysis
    Shi, Yiheng
    Fan, Haohan
    Li, Li
    Hou, Yaqi
    Qian, Feifei
    Zhuang, Mengting
    Miao, Bei
    Fei, Sujuan
    WORLD JOURNAL OF SURGICAL ONCOLOGY, 2024, 22 (01)
  • [35] Ovarian cancer data analysis using deep learning: A systematic review
    School of Health and Life Sciences, Teesside University, United Kingdom
    不详
    不详
    Eng Appl Artif Intell, 1600,
  • [36] Ovarian cancer data analysis using deep learning: A systematic review
    Hira, Muta Tah
    Razzaque, Mohammad A.
    Sarker, Mosharraf
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 138
  • [37] DIAGNOSIS OF ORAL CANCER USING DEEP LEARNING ALGORITHMS
    Olivos, Mayra Alejandra Davila
    Del Aguila, Henry Miguel Herrera
    Lopez, Felix Melchor Santos
    INGENIUS-REVISTA DE CIENCIA Y TECNOLOGIA, 2024, (32): : 58 - 67
  • [38] Deep Learning Methods in Medical Image-Based Hepatocellular Carcinoma Diagnosis: A Systematic Review and Meta-Analysis
    Wei, Qiuxia
    Tan, Nengren
    Xiong, Shiyu
    Luo, Wanrong
    Xia, Haiying
    Luo, Baoming
    CANCERS, 2023, 15 (23)
  • [39] Key points and time intervals for early diagnosis in symptomatic oral cancer: a systematic review
    Varela-Centelles, P.
    Lopez-Cedrun, J. L.
    Fernandez-Sanroman, J.
    Seoane-Romero, J. M.
    Santos de Melo, N.
    Alvarez-Novoa, P.
    Gomez, I.
    Seoane, J.
    INTERNATIONAL JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, 2017, 46 (01) : 1 - 10
  • [40] Deep learning in image-based breast and cervical cancer detection: a systematic review and meta-analysis
    Xue, Peng
    Wang, Jiaxu
    Qin, Dongxu
    Yan, Huijiao
    Qu, Yimin
    Seery, Samuel
    Jiang, Yu
    Qiao, Youlin
    NPJ DIGITAL MEDICINE, 2022, 5 (01)