An analytical method for computing the one-dimensional backward wave problem

被引:0
|
作者
Liu, Chein-Shn [1 ]
机构
[1] Department of Civil Engineering, National Taiwan University, Taipei, Taiwan
来源
Computers, Materials and Continua | 2010年 / 13卷 / 03期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:219 / 234
相关论文
共 50 条
  • [41] THE NONLOCAL BOUNDARY VALUE PROBLEM FOR ONE-DIMENSIONAL BACKWARD KOLMOGOROV EQUATION AND ASSOCIATED SEMIGROUP
    Shevchuk, R., V
    Savka, I. Ya
    Nytrebych, Z. M.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2019, 11 (02) : 463 - 474
  • [42] One-dimensional wave turbulence
    Zakharov, V
    Dias, F
    Pushkarev, A
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2004, 398 (01): : 1 - 65
  • [43] ONE-DIMENSIONAL WAVE DEMONSTRATION
    FOWLER, JM
    BROOKS, JT
    LAMBE, ED
    AMERICAN JOURNAL OF PHYSICS, 1967, 35 (11) : 1065 - &
  • [44] ONE-DIMENSIONAL OUTGASSING PROBLEM
    CONG, TT
    BIRD, GA
    PHYSICS OF FLUIDS, 1978, 21 (03) : 327 - 333
  • [45] The one-dimensional Coulomb problem
    Abramovici, G.
    Avishai, Y.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (28)
  • [46] On the one-dimensional Pompeiu problem
    Barutello, Vivina
    Costantini, Camillo
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (04):
  • [47] On the one-dimensional Coulomb problem
    Jaramillo, Benjamin
    Martinez-Y-Romero, R. P.
    Nunez-Yepez, H. N.
    Salas-Brito, A. L.
    PHYSICS LETTERS A, 2009, 374 (02) : 150 - 153
  • [48] EQUIVALENCE OF A ONE-DIMENSIONAL TURBULENCE PROBLEM AND ONE-DIMENSIONAL COULOMB GAS
    CHUI, ST
    FRISCH, HL
    JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (10) : 1996 - 1997
  • [49] ON CLASSICAL SOLUTION OF MIXED PROBLEM FOR THE EQUATIONS WITH ONE-DIMENSIONAL WAVE OPERATOR
    BARANOVSKAYA, SN
    DOKLADY AKADEMII NAUK BELARUSI, 1990, 34 (09): : 787 - 789
  • [50] Classical solution of a problem with an integral condition for the one-dimensional wave equation
    Moiseev, E. I.
    Korzyuk, V. I.
    Kozlovskaya, I. S.
    DIFFERENTIAL EQUATIONS, 2014, 50 (10) : 1364 - 1377