Bounds for eccentricity-based parameters of graphs
被引:0
|
作者:
Tang, Yunfang
论文数: 0引用数: 0
h-index: 0
机构:
China Jiliang Univ, Dept Math, Hangzhou, Peoples R ChinaChina Jiliang Univ, Dept Math, Hangzhou, Peoples R China
Tang, Yunfang
[1
]
Qi, Xuli
论文数: 0引用数: 0
h-index: 0
机构:
Hebei Univ Sci & Technol, Dept Math, Shijiazhuang, Peoples R ChinaChina Jiliang Univ, Dept Math, Hangzhou, Peoples R China
Qi, Xuli
[2
]
West, Douglas B.
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Normal Univ, Dept Math, Jinhua, Peoples R China
Univ Illinois, Dept Math, Urbana, IL USAChina Jiliang Univ, Dept Math, Hangzhou, Peoples R China
West, Douglas B.
[3
,4
]
机构:
[1] China Jiliang Univ, Dept Math, Hangzhou, Peoples R China
[2] Hebei Univ Sci & Technol, Dept Math, Shijiazhuang, Peoples R China
[3] Zhejiang Normal Univ, Dept Math, Jinhua, Peoples R China
Average eccentricity;
Zagreb eccentricity index;
Diameter;
Chromatic number;
Clique number;
Matching number;
AVERAGE ECCENTRICITY;
EXTREMAL PROPERTIES;
MOLECULAR-ORBITALS;
INDEXES;
D O I:
10.1016/j.dam.2024.11.004
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The eccentricity of a vertex u in a graph G, denoted by epsilon G(u), is the maximum distance from u to other vertices in G. We study extremal problems for the average eccentricity and the first and second Zagreb eccentricity indices, denoted by sigma 0(G), sigma 1(G), and sigma 2(G), respectively. These are defined by sigma 0(G) = 1 u is an element of V(G) epsilon G(u), sigma 1(G) = & sum; and sigma 2(G) = & sum; |V (G)| u is an element of V(G) epsilon 2 G(u),uv is an element of E(G) epsilon G(u)epsilon G(v). We study lower and upper bounds on these parameters among n-vertex connected graphs with fixed diameter, chromatic number, clique number, or matching number. Most of the bounds are sharp, with the corresponding extremal graphs characterized. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
机构:
Pingdingshan Univ, Sch Math & Stat, Pingdingshan 467000, Peoples R China
Henan Int Joint Lab Multidimens Topol & Carcinogen, Pingdingshan 467000, Peoples R ChinaPingdingshan Univ, Sch Math & Stat, Pingdingshan 467000, Peoples R China
Hui, Zhi-Hao
论文数: 引用数:
h-index:
机构:
Fahad, Asfand
Qureshi, Muhammad Imran
论文数: 0引用数: 0
h-index: 0
机构:
COMSATS Univ Islamabad, Dept Math, Vehari Campus, Vehari, PakistanPingdingshan Univ, Sch Math & Stat, Pingdingshan 467000, Peoples R China
Qureshi, Muhammad Imran
Irfan, Rida
论文数: 0引用数: 0
h-index: 0
机构:
COMSATS Univ Islamabad, Dept Math, Sahiwal Campus, Sahiwal, PakistanPingdingshan Univ, Sch Math & Stat, Pingdingshan 467000, Peoples R China
Irfan, Rida
Shireen, Aneesa
论文数: 0引用数: 0
h-index: 0
机构:
COMSATS Univ Islamabad, Dept Math, Vehari Campus, Vehari, PakistanPingdingshan Univ, Sch Math & Stat, Pingdingshan 467000, Peoples R China
Shireen, Aneesa
Iqbal, Zahid
论文数: 0引用数: 0
h-index: 0
机构:
Inst Southern Punjab, Dept Math & Stat, Multan, PakistanPingdingshan Univ, Sch Math & Stat, Pingdingshan 467000, Peoples R China
Iqbal, Zahid
Alyusufi, Rahma
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sanaa, Fac Sci, Dept Math, Sanaa, YemenPingdingshan Univ, Sch Math & Stat, Pingdingshan 467000, Peoples R China
机构:
Univ Johannesburg, Dept Math & Appl Math, ZA-2006 Auckland Pk, South AfricaUniv Johannesburg, Dept Math & Appl Math, ZA-2006 Auckland Pk, South Africa