High entropy ceramics: research trends and reviewing mechanical properties using computer vision techniques

被引:0
|
作者
Kumar, Bijendra [1 ,2 ]
Bhattacharya, Tapas Kumar [3 ]
Modak, Nipu [1 ]
Mukherjee, Alok [4 ]
Chatterjeee, Kingshuk [5 ]
Haldar, Partha [6 ]
机构
[1] Jadavpur Univ, Dept Mech Engn, Kolkata 700032, West Bengal, India
[2] Gun & Shell Factory, Kolkata 700002, West Bengal, India
[3] Govt Coll Engn & Ceram Technol, Dept Ceram Technol, Kolkata 700010, West Bengal, India
[4] Govt Coll Engn & Ceram Technol, Dept Elect Engn, Kolkata 700010, West Bengal, India
[5] Govt Coll Engn & Ceram Technol, Dept Comp Sci & Engn, Kolkata 700010, West Bengal, India
[6] Govt Coll Engn & Ceram Technol, Dept Mech Engn, Kolkata, West Bengal, India
关键词
high entropy ceramic; bibliometric analysis; VOSviewer; Biblioshiny; Gephi; property extraction; PHASE-STABILITY;
D O I
10.1088/2053-1591/ada493
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High entropy ceramics (HECs) represent a novel class of materials characterized by their unique multi-principal element compositions and exceptional properties. This study investigates the mechanical and thermal properties of high entropy ceramics through a comprehensive bibliometric analysis of 395 Scopus-indexed articles. Biblioshiny, VOSviewer and Gephi software are used to analyze different data linked with these articles. Data from abstracts are analyzed to identify properties like thermal conductivity, hardness, fracture toughness, etc Computer vision has been applied in data extraction and property characterization of HEC. Investigation reveals significant insights into the co-occurrence of keywords related to various mechanical properties, such as fracture toughness and compressive strength, alongside thermal characteristics like thermal conductivity. Visualizing these relationships highlights research clusters and identifies gaps in the current literature, paving the way for future exploration in this promising field.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Predicting Eye Fixations Using Computer Vision Techniques
    Alevizaki, Ada
    Melanitis, Nikos
    Nikita, Konstantina
    2019 IEEE 19TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2019, : 309 - 315
  • [32] Crowd Analysis Using Computer Vision Techniques [A survey]
    Silveira Jacques, Julio Cezar, Jr.
    Musse, Soraia Raupp
    Jung, Claudio Rosito
    IEEE SIGNAL PROCESSING MAGAZINE, 2010, 27 (05) : 66 - 77
  • [33] Nutmeg grading system using computer vision techniques
    Nasution, I. S.
    Gusriyan, K.
    INTERNATIONAL CONFERENCE ON AGRICULTURAL TECHNOLOGY, ENGINEERING AND ENVIRONMENTAL SCIENCES 2019, 2019, 365
  • [34] Detecting road potholes using computer vision techniques
    Camilleri, Neil
    Gatt, Thomas
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP 2020), 2020, : 343 - 350
  • [35] Automatic chickpea classification using computer vision techniques
    Sabzi, Sajad
    Manuel Garcia-Amicis, Victor
    Abbaspour-Gilandeh, Yousef
    Garcia-Mateos, Gines
    Miguel Molina-Martinez, Jose
    IX CONGRESO IBERICO DE AGROINGENIERIA - LIBROS DE ACTAS, 2018, : 1167 - 1176
  • [36] Detecting Driver Drowsiness Using Computer Vision Techniques
    Vural, Esra
    Cetin, Muejdat
    Ercil, Aytuel
    Littlewort, Gwen
    Bartlett, Marian
    Movellan, Javier
    2008 IEEE 16TH SIGNAL PROCESSING, COMMUNICATION AND APPLICATIONS CONFERENCE, VOLS 1 AND 2, 2008, : 549 - +
  • [37] Fabric Texture Analysis Using Computer Vision Techniques
    Wang, Xin
    Georganas, Nicolas D.
    Petriu, Emil M.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2011, 60 (01) : 44 - 56
  • [38] Structural identification of bridges using computer vision techniques
    Dong, C. Z.
    Catbas, F. N.
    ADVANCES IN ENGINEERING MATERIALS, STRUCTURES AND SYSTEMS: INNOVATIONS, MECHANICS AND APPLICATIONS, 2019, : 2096 - 2100
  • [39] Automated video segmentation using computer vision techniques
    Yoo, HW
    Jang, DS
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2004, 3 (01) : 129 - 143
  • [40] Safety Quantification of Intersections Using Computer Vision Techniques
    Shirazi, Mohammad Shokrolah
    Morris, Brendan
    ADVANCES IN VISUAL COMPUTING, PT I (ISVC 2015), 2015, 9474 : 752 - 761