Improving Irrigation Water Use Efficiency and Maximizing Vegetable Yields with Drip Irrigation and Poly-Mulching: A Climate-Smart Approach

被引:0
|
作者
Bwire, Denis [1 ,2 ]
Watanabe, Fumio [3 ]
Suzuki, Shinji [3 ]
Suzuki, Kana [4 ]
机构
[1] Busitema Univ, Dept Agr Mechanizat & Irrigat Engn, POB 236, Tororo, Uganda
[2] Saerd Tech Consultants Ltd, R D & Business Dev, POB 16048, Kampala, Uganda
[3] Tokyo Univ Agr, Dept Agr Engn, Lab Soil & Water Environm Technol, 1-1-1 Sakuragaoka,Setegaya Ku, Tokyo 1568502, Japan
[4] Niigata Prefectural Off, 4-1 Shinko Cho,Chuo Ku, Niigata 9508570, Japan
关键词
water management; evapotranspiration; tomato cultivation; smallholder farmers; water scarcity; food security; L; QUALITY; ROOT;
D O I
10.3390/w16233458
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Water management is a significant aspect of sustainable vegetable farming, especially in water-scarce regions. This, in addition to weed infestations, limits vegetable yields, which negatively affect food security in developing regions, particularly East Africa, where livelihoods chiefly depend on rain-fed agriculture. Vegetable farming, especially tomato cultivation, requires more water. By promoting mulching, a soil water conservation tool, we can control surface evaporation (E), which, together with irrigation, enhances effective water use and vegetable yields. The experiments for this study were conducted at the Tokyo University of Agriculture, Japan, to evaluate the influences of different irrigation conditions and poly-mulching on weed control, tomato yields, and water use efficiency. The study was conducted from May to September 2018 on a 30 m2 plot in an open-ended greenhouse using drip irrigation for tomato cultivation. Three predetermined irrigation conditions of 4, 3, and 2 mm/day were applied on black poly-mulched and bare ridges. Data on soil conditions-soil temperature, as well as meteorological variables, including solar radiation and temperature-were measured using thermocouple sensors and micro-hobo weather stations, respectively, during the tomato cultivation, while yield components-growth, yield, water productivity, and sugar content-were determined after harvest. The results of a two-way ANOVA show that irrigation conditions with poly-mulching reduced the weed biomass significantly, and improved yields and water use efficiency compared to the irrigation conditions on bare ridges. The application of 4, 3, and 2 mm/day irrigation with poly-mulching significantly reduced the weed biomass by 5% compared to the same irrigation conditions on bare ridges. Similarly, 4 and 3 mm/day irrigation conditions with poly-mulching significantly increased the tomato yield by 5% compared to 2 mm/day on bare ridges. The bigger roots were concentrated and widely distributed at the shallow soil depth (0-20 cm) of the ridges with high irrigation amounts, while the small and thin roots were in deeper soil layers (30-45 cm). This study provides scientific knowledge on the application of predetermined irrigation conditions that can be (i) integrated into irrigation scheduling and (ii) adopted for regions facing water scarcity and limited or no in situ meteorological data, to improve water use efficiency for vegetable cultivation.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] WATER REQUIREMENTS AND WATER USE EFFICIENCY OF CARROT UNDER DRIP IRRIGATION IN A HAPLOXERAND SOIL
    Quezada, C.
    Fischer, S.
    Campos, J.
    Ardiles, D.
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2011, 11 (01) : 16 - 28
  • [32] Polymer and deficit irrigation influence on water use efficiency and yield of muskmelon under surface and subsurface drip irrigation
    Zeineldin, Faisal I.
    Al-Molhim, Yousef
    SOIL AND WATER RESEARCH, 2021, 16 (03) : 191 - 203
  • [33] Water use efficiency control for a maize field under mulched drip irrigation
    Wang, Chunyu
    Li, Sien
    Wu, Mousong
    Zhang, Wenxin
    He, Hongxing
    Yang, Danni
    Huang, Siyu
    Guo, Zhenyu
    Xing, Xiuli
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 857
  • [34] Mulched drip irrigation increases cotton yield and water use efficiency via improving fine root plasticity
    Wang, Jiangtao
    Du, Gangfeng
    Tian, Jingshan
    Jiang, Chuangdao
    Zhang, Yali
    Zhang, Wangfeng
    AGRICULTURAL WATER MANAGEMENT, 2021, 255
  • [35] Effects of drip irrigation regimes on tomato fruit yield and water use efficiency
    Zhai, Y. M.
    Shao, X. H.
    Xing, W. G.
    Wang, Y.
    Hung, T. T.
    Xu, H. L.
    JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2010, 8 (3-4): : 709 - 713
  • [36] Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation
    Ibragimov, Nazirbay
    Evett, Steven R.
    Esanbekov, Yusupbek
    Kamilov, Bakhtiyor S.
    Mirzaev, Lutfullo
    Lamers, John P. A.
    AGRICULTURAL WATER MANAGEMENT, 2007, 90 (1-2) : 112 - 120
  • [37] PRODUCTIVITY AND WATER USE EFFICIENCY OF MAIZE UNDER SURFACE AND SUBSURFACE DRIP IRRIGATION
    Thejel, A. A.
    Mohamed, K. M.
    IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 2007, 38 (06): : 21 - 26
  • [38] Impacts of double-line drip irrigation and straw mulching on sweet cherry water use and productivity
    Yin, Xinhua
    Seavert, Clark
    Tomasini, Nick
    HORTSCIENCE, 2008, 43 (04) : 1164 - 1165
  • [39] Effects of different irrigation methods and mulching on yield, growth and water use efficiency of strawberry
    Biswas, Benukar
    Timsina, Jagadish
    Mandal, Krishna Gopal
    Naorem, Anandkumar
    NEW ZEALAND JOURNAL OF CROP AND HORTICULTURAL SCIENCE, 2024,
  • [40] Intelligent IoT-multiagent precision irrigation approach for improving water use efficiency in irrigation systems at farm and district scales
    Jimenez, Andres-F
    Cardenas, Pedro-F
    Jimenez, Fabian
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 192