Multi-agent deep reinforcement learning with online and fair optimal dispatch of EV aggregators

被引:0
|
作者
Kamrani, Arian Shah [1 ,2 ]
Dini, Anoosh [3 ]
Dagdougui, Hanane [1 ,2 ]
Sheshyekani, Keyhan [3 ]
机构
[1] Polytech Montreal, Dept Math & Ind Engn, 2500 Chemin Polytech, Montreal, PQ H3T 1J4, Canada
[2] GERAD Res Ctr, 3000 Chemin Polytech, Montreal, PQ H3T 2A7, Canada
[3] Polytech Montreal, Dept Elect Engn, 2500 Chemin Polytech, Montreal, PQ H3T 1J4, Canada
来源
关键词
Electric vehicle (EV); Reinforcement learning (RL); Energy management; Jain's index; Distribution system operator (DSO); SYSTEMS; ALGORITHM;
D O I
10.1016/j.mlwa.2025.100620
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The growing popularity of electric vehicles (EVs) and the unpredictable behavior of EV owners have attracted attention to real-time coordination of EVs charging management. This paper presents a hierarchical structure for charging management of EVs by integrating fairness and efficiency concepts within the operations of the distribution system operator (DSO) while utilizing a multi-agent deep reinforcement learning (MADRL) framework to tackle the complexities of energy purchasing and distribution among EV aggregators (EVAs). At the upper level, DSO calculates the maximum allowable power for each EVA based on power flow constraints to ensure grid safety. Then, it finds the optimal efficiency-Jain tradeoff (EJT) point, where it sells the highest energy amount while ensuring equitable energy distribution. At the lower level, initially, each EVA acts as an agent employing a double deep Q-network (DDQN) with adaptive learning rates and prioritized experience replay to determine optimal energy purchases from the DSO. Then, the real-time smart dispatch (RSD) controller prioritizes EVs for energy dispatch based on relevant EVs information. Findings indicate the proposed enhanced DDQN outperforms deep deterministic policy gradient (DDPG) and proximal policy optimization (PPO) in cumulative rewards and convergence speed. Finally, the framework's performance is evaluated against uncontrolled charging and the first come first serve (FCFS) scenario using the 118-bus distribution system, demonstrating superior performance in maintaining safe operation of the grid while reducing charging costs for EVAs. Additionally, the framework's integration with renewable energy sources (RESs), such as photovoltaic (PV), demonstrates its potential to enhance grid reliability.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Multi-Agent Deep Reinforcement Learning with Emergent Communication
    Simoes, David
    Lau, Nuno
    Reis, Luis Paulo
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [32] Sparse communication in multi-agent deep reinforcement learning
    Han, Shuai
    Dastani, Mehdi
    Wang, Shihan
    NEUROCOMPUTING, 2025, 625
  • [33] Multi-Agent Deep Reinforcement Learning with Human Strategies
    Thanh Nguyen
    Ngoc Duy Nguyen
    Nahavandi, Saeid
    2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2019, : 1357 - 1362
  • [34] Cooperative Exploration for Multi-Agent Deep Reinforcement Learning
    Liu, Iou-Jen
    Jain, Unnat
    Yeh, Raymond A.
    Schwing, Alexander G.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [35] Competitive Evolution Multi-Agent Deep Reinforcement Learning
    Zhou, Wenhong
    Chen, Yiting
    Li, Jie
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2019), 2019,
  • [36] Strategic Interaction Multi-Agent Deep Reinforcement Learning
    Zhou, Wenhong
    Li, Jie
    Chen, Yiting
    Shen, Lin-Cheng
    IEEE ACCESS, 2020, 8 : 119000 - 119009
  • [37] A review of cooperative multi-agent deep reinforcement learning
    Oroojlooy, Afshin
    Hajinezhad, Davood
    APPLIED INTELLIGENCE, 2023, 53 (11) : 13677 - 13722
  • [38] Multi-Agent Deep Reinforcement Learning for Walker Systems
    Park, Inhee
    Moh, Teng-Sheng
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 490 - 495
  • [39] Action Markets in Deep Multi-Agent Reinforcement Learning
    Schmid, Kyrill
    Belzner, Lenz
    Gabor, Thomas
    Phan, Thomy
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT II, 2018, 11140 : 240 - 249
  • [40] Strategic Interaction Multi-Agent Deep Reinforcement Learning
    Zhou, Wenhong
    Li, Jie
    Chen, Yiting
    Shen, Lin-Cheng
    IEEE Access, 2020, 8 : 119000 - 119009