Mobile Network Configuration Recommendation Using Deep Generative Graph Neural Network

被引:0
|
作者
Piroti, Shirwan [1 ]
Chawla, Ashima [1 ]
Zanouda, Tahar [1 ]
机构
[1] Ericsson, Stockholm,164 83, Sweden
来源
IEEE Networking Letters | 2024年 / 6卷 / 03期
关键词
Computer architecture - Deep learning - Domain Knowledge - Graph neural networks - Network architecture;
D O I
10.1109/LNET.2024.3422482
中图分类号
学科分类号
摘要
There are vast number of configurable parameters in a Radio Access Telecom Network. A significant amount of these parameters is configured by Radio Node or cell based on their deployment setting. Traditional methods rely on domain knowledge for individual parameter configuration, often leading to sub-optimal results. To improve this, a framework using a Deep Generative Graph Neural Network (GNN) is proposed. It encodes the network into a graph, extracts subgraphs for each RAN node, and employs a Siamese GNN (S-GNN) to learn embeddings. The framework recommends configuration parameters for a multitude of parameters and detects misconfigurations, handling both network expansion and existing cell reconfiguration. Tested on real-world data, the model surpasses baselines, demonstrating accuracy, generalizability, and robustness against concept drift. © 2019 IEEE.
引用
收藏
页码:179 / 182
相关论文
共 50 条
  • [21] Self-supervised graph neural network with pre-training generative learning for recommendation systems
    Xin Min
    Wei Li
    Jinzhao Yang
    Weidong Xie
    Dazhe Zhao
    Scientific Reports, 12
  • [22] Adversarial Heterogeneous Graph Neural Network for Robust Recommendation
    Sang, Lei
    Xu, Min
    Qian, Shengsheng
    Wu, Xindong
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (05) : 2660 - 2671
  • [23] Self-supervised graph neural network with pre-training generative learning for recommendation systems
    Min, Xin
    Li, Wei
    Yang, Jinzhao
    Xie, Weidong
    Zhao, Dazhe
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [24] DualGNN: Dual Graph Neural Network for Multimedia Recommendation
    Wang, Qifan
    Wei, Yinwei
    Yin, Jianhua
    Wu, Jianlong
    Song, Xuemeng
    Nie, Liqiang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 1074 - 1084
  • [25] Self-Propagation Graph Neural Network for Recommendation
    Yu, Wenhui
    Lin, Xiao
    Liu, Jinfei
    Ge, Junfeng
    Ou, Wenwu
    Qin, Zheng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (12) : 5993 - 6002
  • [26] A Social Recommendation Algorithm Based on Graph Neural Network
    Lyu Y.-X.
    Hao S.
    Qiao G.-T.
    Xing Y.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2024, 45 (01): : 10 - 17
  • [27] Course Recommendation Based on Graph Convolutional Neural Network
    An Cong Tran
    Duc-Thien Tran
    Nguyen Thai-Nghe
    Tran Thanh Dien
    Hai Thanh Nguyen
    ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE. THEORY AND APPLICATIONS, IEA/AIE 2023, PT I, 2023, 13925 : 235 - 240
  • [28] Graph neural network for recommendation in complex and quaternion spaces
    Longcan Wu
    Daling Wang
    Shi Feng
    Xiangmin Zhou
    Yifei Zhang
    Ge Yu
    World Wide Web, 2023, 26 (6) : 3945 - 3964
  • [29] Graph Convolutional Neural Network for Multimodal Movie Recommendation
    Mondal, Prabir
    Chakder, Daipayan
    Raj, Subham
    Saha, Sriparna
    Onoe, Naoyuki
    38TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2023, 2023, : 1633 - 1640
  • [30] KerGNNT: an interpretable graph neural network recommendation model
    Liang, Shengbin
    Ma, Jinfeng
    Sun, Fuqi
    Chen, Tingting
    Lu, Xixi
    Ren, Shuanglong
    KNOWLEDGE AND INFORMATION SYSTEMS, 2025,