The brainstormers: Design principles of reinforcement learning autonomous robots

被引:0
|
作者
Riedmiller, Martin [1 ]
Gabel, Thomas [1 ]
Hafner, Roland [1 ]
Lange, Sascha [1 ]
Lauer, Martin [1 ]
机构
[1] Arbeitsgruppe Neuroinformatik, Universität Osnabrück, 49069 Osnabrück, Germany
关键词
D O I
10.1007/s00287-006-0077-9
中图分类号
学科分类号
摘要
引用
收藏
页码:175 / 190
相关论文
共 50 条
  • [1] Karlsruhe brainstormers - Design principles
    Riedmiller, M
    Buck, S
    Merke, A
    Ehrmann, R
    Thate, O
    Dilger, S
    Sinner, A
    Hofmann, A
    Frommberger, L
    ROBOCUP-99: ROBOT SOCCER WORLD CUP III, 2000, 1856 : 588 - 591
  • [2] Autonomous cognition and reinforcement learning for mobile robots
    Calvo, Rodrigo
    Figueiredo, Mauricio
    Francelin Romero, Roseli Ap.
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [3] A classifier system for reinforcement learning control of autonomous robots
    Kuroyama, K
    Svinin, MM
    Ueda, K
    INTELLIGENT AUTONOMOUS SYSTEMS: IAS-5, 1998, : 304 - 311
  • [4] Hybridizing evolutionary computation and reinforcement learning for the design of almost universal controllers for autonomous robots
    Maravall, Dario
    de Lope, Javier
    Martin H., Jose Antonio
    NEUROCOMPUTING, 2009, 72 (4-6) : 887 - 894
  • [5] Research on Autonomous Robots Navigation based on Reinforcement Learning
    Wang, Zixiang
    Yan, Hao
    Wang, Yining
    Xu, Zhengjia
    Wang, Zhuoyue
    Wu, Zhizhong
    2024 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, ARTIFICIAL INTELLIGENCE AND INTELLIGENT CONTROL, RAIIC 2024, 2024, : 78 - 81
  • [6] Human-aligned reinforcement learning for autonomous agents and robots
    Cruz, Francisco
    Karimpanal, Thommen George
    Solis, Miguel A.
    Barros, Pablo
    Dazeley, Richard
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (23): : 16689 - 16691
  • [7] Path Following for Autonomous Mobile Robots with Deep Reinforcement Learning
    Cao, Yu
    Ni, Kan
    Kawaguchi, Takahiro
    Hashimoto, Seiji
    SENSORS, 2024, 24 (02)
  • [8] Deep Reinforcement Learning for the Autonomous Adaptive Behavior of Social Robots
    Maroto-Gomez, Marcos
    Malfaz, Maria
    Castro-Gonzalez, Alvaro
    Angel Salichs, Miguel
    SOCIAL ROBOTICS, ICSR 2022, PT I, 2022, 13817 : 208 - 217
  • [9] Human-aligned reinforcement learning for autonomous agents and robots
    Francisco Cruz
    Thommen George Karimpanal
    Miguel A. Solis
    Pablo Barros
    Richard Dazeley
    Neural Computing and Applications, 2023, 35 : 16689 - 16691
  • [10] Mapless Navigation for Autonomous Robots: A Deep Reinforcement Learning Approach
    Zhang, Pengpeng
    Wei, Changyun
    Cai, Boliang
    Ouyang, Yongping
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 3141 - 3146