Detection of Apple Proliferation Disease Using Hyperspectral Imaging and Machine Learning Techniques

被引:0
|
作者
Knauer, Uwe [1 ]
Warnemünde, Sebastian [2 ]
Menz, Patrick [2 ]
Thielert, Bonito [2 ]
Klein, Lauritz [2 ]
Holstein, Katharina [3 ]
Runne, Miriam [4 ]
Jarausch, Wolfgang [4 ]
机构
[1] Department of Agriculture, Ecotrophology and Landscape Development, Anhalt University of Applied Sciences, Bernburg,06406, Germany
[2] Cognitive Processes and Systems, Fraunhofer Institute for Factory Operation and Automation IFF, Magdeburg,39106, Germany
[3] Department of Computer Science and Languages, Anhalt University of Applied Sciences, Köthen,06366, Germany
[4] RLP AgroScience, Neustadt an der Weinstrasse,67435, Germany
关键词
Candida;
D O I
10.3390/s24237774
中图分类号
学科分类号
摘要
Apple proliferation is among the most important diseases in European fruit production. Early and reliable detection enables farmers to respond appropriately and to prevent further spreading of the disease. Traditional phenotyping approaches by human observers consider multiple symptoms, but these are difficult to measure automatically in the field. Therefore, the potential of hyperspectral imaging in combination with data analysis by machine learning algorithms was investigated to detect the symptoms solely based on the spectral signature of collected leaf samples. In the growing seasons 2019 and 2020, a total of 1160 leaf samples were collected. Hyperspectral imaging with a dual camera setup in spectral bands from 400 nm to 2500 nm was accompanied with subsequent PCR analysis of the samples to provide reference data for the machine learning approaches. Data processing consists of preprocessing for segmentation of the leaf area, feature extraction, classification and subsequent analysis of relevance of spectral bands. The results show that imaging multiple leaves of a tree enhances detection results, that spectral indices are a robust means to detect the diseased trees, and that the potentials of the full spectral range can be exploited using machine learning approaches. Classification models like rRBF achieved an accuracy of 0.971 in a controlled environment with stratified data for a single variety. Combined models for multiple varieties from field test samples achieved classification accuracies of 0.731. Including spatial distribution of spectral data further improves the results to 0.751. Prediction of qPCR results by regression based on spectral data achieved RMSE of 14.491 phytoplasma per plant cell. © 2024 by the authors.
引用
收藏
相关论文
共 50 条
  • [41] Estimation of soil properties using Hyperspectral imaging and Machine learning
    Chlouveraki, Eirini
    Katsenios, Nikolaos
    Efthimiadou, Aspasia
    Lazarou, Erato
    Kounani, Kalliopi
    Papakonstantinou, Eleni
    Vlachakis, Dimitrios
    Kasimati, Aikaterini
    Zafeiriou, Ioannis
    Espejo-Garcia, Borja
    Fountas, Spyros
    SMART AGRICULTURAL TECHNOLOGY, 2025, 10
  • [42] Milk adulteration identification using hyperspectral imaging and machine learning
    Aqeel, Muhammad
    Sohaib, Ahmed
    Iqbal, Muhammad
    Ullah, Syed Sajid
    JOURNAL OF DAIRY SCIENCE, 2025, 108 (02) : 1301 - 1314
  • [43] Hyperspectral Imaging Technology Combined With Machine Learning for Detection of Moldy Rice
    Li Bin
    Su Cheng-tao
    Yin Hai
    Liu Yan-de
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43 (08) : 2391 - 2396
  • [44] Hyperspectral Imaging and Machine Learning for Huanglongbing Detection on Leaf-Symptoms
    Dong, Ruihao
    Shiraiwa, Aya
    Ichinose, Katsuya
    Pawasut, Achara
    Sreechun, Kesaraporn
    Mensin, Sumalee
    Hayashi, Takefumi
    PLANTS-BASEL, 2025, 14 (03):
  • [45] Assessing produce freshness using hyperspectral imaging and machine learning
    Logan, Riley D.
    Scherrer, Bryan
    Senecal, Jacob
    Walton, Neil S.
    Peerlinck, Amy
    Sheppard, John W.
    Shaw, Joseph A.
    JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (03)
  • [46] Mango varietal discrimination using hyperspectral imaging and machine learning
    Castro, Wilson
    Tene, Baldemar
    Castro, Jorge
    Guivin, Alex
    Ruesta, Nelson
    Avila-George, Himer
    Neural Computing and Applications, 2024, 36 (30) : 18693 - 18703
  • [47] Aflatoxin Contaminated Chili Pepper Detection by Hyperspectral Imaging and Machine Learning
    Atas, Musa
    Yardimci, Yasemin
    Temizel, Alptekin
    SENSING FOR AGRICULTURE AND FOOD QUALITY AND SAFETY III, 2011, 8027
  • [48] Enhanced Agricultural Monitoring through Hyperspectral Imaging and Advanced Machine Learning Techniques
    Kapileswar, Nellore
    Simon, Judy
    Sirisha, Kota
    Pujitha, Bezawada Raja
    Kumar, Lekkala Charan Sai
    Harish, Chappagadda
    2024 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBER PHYSICAL SYSTEMS AND INTERNET OF THINGS, ICOICI 2024, 2024, : 1495 - 1502
  • [49] Quality detection of common beans flour using hyperspectral imaging technology: Potential of machine learning and deep learning
    Rashvand, Mahdi
    Paterna, Giuliana
    Laveglia, Sabina
    Zhang, Hongwei
    Shenfield, Alex
    Gioia, Tania
    Altieri, Giuseppe
    Di Renzo, Giovanni Carlo
    Genovese, Francesco
    JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2025, 142
  • [50] Horizon detection using machine learning techniques
    Fefilatyev, Sergiy
    Smarodzinava, Volha
    Hall, Lawrence O.
    Goldgof, Dmitry B.
    ICMLA 2006: 5TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2006, : 17 - +