Polymer Electrolyte Based All-Solid-State Rechargeable Fluoride Ion Batteries

被引:0
|
作者
Yu, Yifan [1 ,2 ,3 ]
Li, Guyue [1 ,2 ,3 ]
Li, Chilin [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine M, 585 He Shuo Rd, Shanghai 201899, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, CAS Key Lab Mat Energy Convers, Shanghai Inst Ceram, Shanghai 201899, Peoples R China
基金
中国国家自然科学基金;
关键词
all-solid-state batteries; fluoride ion batteries; polymer electrolyte; PHOTOELECTRON-SPECTROSCOPY; CATHODE; ALKALI;
D O I
10.1002/adfm.202410891
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rechargeable fluoride ion batteries (FIBs) are one of the most promising energy storage candidates in view of high energy density and low cost. The development of highly F-conductive, safe, and flexible electrolytes is the central task for the construction of high-performance FIBs. Hereby, this work first proposes a polyvinyl alcohol (PVA)-borax-glycerol (PBG) polymer electrolyte. The F- transport along one PVA chain is realized by the interaction between F- and -OH on the PVA chain and the motion of PVA chain would facilitate the migration of F-. The B(OH)4- dissociated from borax can be used as a cross-linking agent, and react with the hydroxyl groups on PVA by a dehydration process to form a polymer with a 3D cross-linked structure. The optimized ionic conductivity (as high as 2.82 x 10-4 S cm-1 at 30 degrees C and 1.08 x 10-3 S cm-1 at 60 degrees C) of PBG can be obtained. The flat and soft surface of PBG electrolytes can significantly reduce the activation energy for the interfacial transport process. Benefitting from the high ionic conductivity and easier interfacial transport, the PBG electrolyte makes the all-solid-state FIBs enable reversible cycling at a high current density of 125 mA g-1.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] NOVEL STRUCTURED ELECTROLYTE FOR ALL-SOLID-STATE LITHIUM ION BATTERIES
    Liu, Wei
    Milcarek, Ryan
    Wang, Kang
    Ahn, Jeongmin
    PROCEEDINGS OF THE ASME 13TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2015, 2016,
  • [22] Properties of interfaces in all-solid-state rechargeable alkali-ion batteries
    Ong, Shyue Ping
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [23] Ultrastable All-Solid-State Sodium Rechargeable Batteries
    Yang, Jing
    Liu, Gaozhan
    Avdeev, Maxim
    Wan, Hongli
    Han, Fudong
    Shen, Lin
    Zou, Zheyi
    Shi, Siqi
    Hu, Yong-Sheng
    Wang, Chunsheng
    Yao, Xiayin
    ACS ENERGY LETTERS, 2020, 5 (09) : 2835 - 2841
  • [24] Solid polymer electrolyte supported by porous polymer membrane for all-solid-state lithium batteries
    Seo, Yerin
    Jung, Yun-Chae
    Park, Myung-Soo
    Kim, Dong-Won
    JOURNAL OF MEMBRANE SCIENCE, 2020, 603
  • [25] Ultrathin rechargeable all-solid-state batteries based on monolayer graphene
    Wei, Di
    Haque, Samiul
    Andrew, Piers
    Kivioja, Jani
    Ryhaenen, Tapani
    Pesquera, Amaia
    Centeno, Alba
    Alonso, Beatriz
    Chuvilin, Andrey
    Zurutuza, Amaia
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (09) : 3177 - 3181
  • [26] Development of Silicon Polymer Electrodes with a Hybrid Polymer Electrolyte for All-Solid-State Lithium-Ion Batteries
    Goettlinger, Mara
    Amrhein, Simon
    Piesold, Christian
    Weller, Mario
    Peters, Simone
    Giffin, Guinevere A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (03)
  • [27] Solid Polymer Electrolyte Based on Polymerized Ionic Liquid for High Performance All-Solid-State Lithium-Ion Batteries
    Ma, Furui
    Zhang, Zengqi
    Yan, Wenchao
    Ma, Xiaodi
    Sun, Deye
    Jin, Yongcheng
    Chen, Xiaochun
    He, Kuang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (05): : 4675 - 4683
  • [28] Solid electrolyte based on waterborne polyurethane and poly(ethylene oxide) blend polymer for all-solid-state lithium ion batteries
    Bao, Junjie
    Qu, Xinbo
    Qi, Guoqin
    Huang, Qikai
    Wu, Shufan
    Tao, Can
    Gao, Minghao
    Chen, Chunhua
    SOLID STATE IONICS, 2018, 320 : 55 - 63
  • [29] All-solid-state polymer electrolyte with plastic crystal materials for rechargeable magnesium battery
    Abdel-Samiea, B. M.
    Gamal, Rania
    Sheha, E.
    NANOTECHNOLOGY 2012, VOL 3: BIO SENSORS, INSTRUMENTS, MEDICAL, ENVIRONMENT AND ENERGY, 2012, : 533 - 536
  • [30] High ion conductivity based on a polyurethane composite solid electrolyte for all-solid-state lithium batteries
    Cui, Peng
    Zhang, Qi
    Sun, Chun
    Gu, Jing
    Shu, Mengxin
    Gao, Congqiang
    Zhang, Qing
    Wei, Wei
    RSC ADVANCES, 2022, 12 (07) : 3828 - 3837