Reducing Data Resolution for Better Superresolution: Reconstructing Turbulent Flows from Noisy Observation

被引:0
|
作者
Yeo, Kyongmin [1 ]
Zimon, Malgorzata J. [2 ,4 ]
Zayats, Mykhaylo [3 ]
Zhuk, Sergiy [3 ]
机构
[1] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] IBM Res Europe, Daresbury, England
[3] IBM Res Europe, Dublin, Ireland
[4] Univ Manchester, Dept Math, Manchester, England
关键词
Navier Stokes equations;
D O I
10.1103/PhysRevLett.133.264001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A superresolution (SR) method for the reconstruction of Navier-Stokes (NS) flows from noisy observations is presented. In the SR method, first the observation data are averaged over a coarse grid to reduce the noise at the expense of losing resolution and, then, a dynamic observer is employed to reconstruct the flow field by reversing back the lost information. We provide a theoretical analysis, which indicates a chaos synchronization of the SR observer with the reference NS flow. It is shown that, even with noisy observations, the SR observer converges toward the reference NS flow exponentially fast, and the deviation of the observer from the reference system is bounded. Counterintuitively, our theoretical analysis shows that the deviation can be reduced by increasing the length scale of the spatial average, i.e., making the resolution coarser. The theoretical analysis is confirmed by numerical experiments of two-dimensional NS flows. The numerical experiments suggest that there is a critical length scale for the spatial average, below which making the resolution coarser improves the reconstruction.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] An inverse problem of reconstructing option drift rate from market observation data
    Z. C. Deng
    X. Y. Zhao
    L. Yang
    Boundary Value Problems, 2021
  • [22] An inverse problem of reconstructing option drift rate from market observation data
    Deng, Z. C.
    Zhao, X. Y.
    Yang, L.
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [23] Reconstructing high resolution image from overlapped low resolution fan beam projections data
    Zhang, Peng
    Guo, Minghuan
    He Jishu/Nuclear Techniques, 2002, 25 (10):
  • [24] Virtualized Traffic: Reconstructing Traffic Flows from Discrete Spatio-Temporal Data
    van den Berg, Jur
    Sewall, Jason
    Lin, Ming
    Manocha, Dinesh
    IEEE VIRTUAL REALITY 2009, PROCEEDINGS, 2009, : 183 - 190
  • [25] AN FFT-BASED ALGORITHM FOR RECONSTRUCTING INHOMOGENEOUS CIRCULAR CYLINDRICAL-SHELLS FROM NOISY DATA
    JEGANNATHAN, S
    RAMAMURTHI, B
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 1990, 15 : 235 - 247
  • [26] Reconstructing global daily XCO2 at 1° x 1° spatial resolution from 2016 to 2019 with multisource satellite observation data
    Huang, Yao
    Wang, Rui
    Ju, Ming
    Zhu, Xianxun
    Xie, Yanan
    JOURNAL OF APPLIED REMOTE SENSING, 2024, 18 (02)
  • [27] Spatiotemporal correlations and turbulent photospheric flows from SOHO/MDI velocity data
    Cadavid, AC
    Lawrence, JK
    Ruzmaikin, AA
    Walton, SR
    Tarbell, T
    ASTROPHYSICAL JOURNAL, 1998, 509 (02): : 918 - 926
  • [28] Reconstructing the time evolution of wall-bounded turbulent flows from non-time-resolved PIV measurements
    Krishna, C. Vamsi
    Wang, Mengying
    Hemati, Maziar S.
    Luhar, Mitul
    PHYSICAL REVIEW FLUIDS, 2020, 5 (05):
  • [29] Reconstructing turbulent velocity and pressure fields from under-resolved noisy particle tracks using physics-informed neural networks
    Di Leoni, Patricio Clark
    Agarwal, Karuna
    Zaki, Tamer A.
    Meneveau, Charles
    Katz, Joseph
    EXPERIMENTS IN FLUIDS, 2023, 64 (05)
  • [30] Reconstructing turbulent velocity and pressure fields from under-resolved noisy particle tracks using physics-informed neural networks
    Patricio Clark Di Leoni
    Karuna Agarwal
    Tamer A. Zaki
    Charles Meneveau
    Joseph Katz
    Experiments in Fluids, 2023, 64