Flow and heat transfer characteristics of a novel jet impingement cooling with multi-layer drainage channels at blade leading edge

被引:0
|
作者
Wang, Huihui [1 ]
Deng, Qinghua [1 ]
Feng, Zhenping [1 ]
机构
[1] Xi An Jiao Tong Univ, Inst Turbomachinery, Shaanxi Engn Lab Turbomachinery & Power Equipment, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Gas turbine blades; Jet impingement cooling; Low and heat transfer; Numerical simulation; CROSS-FLOW;
D O I
10.1016/j.icheatmasstransfer.2024.108489
中图分类号
O414.1 [热力学];
学科分类号
摘要
Advanced and efficient cooling strategies are critical for safety operation and reasonable durability of turbine blades. Impingement drainage cooling, a novel jet impingement cooling with multi-layer drainage channels, is presented in this paper. Three different cooling configurations utilizing the novel jet impingement scheme are numerically investigated and comprehensively compared with conventional jet impingement cooling under turbine operating conditions. The results indicate that the impingement drainage cooling requires lower supply pressure of cooling air and produces less flow loss. Each jet of impingement drainage cooling generates a pair of counter-rotating vortices in the transverse direction, differing from the longitudinal vortices typically observed in the conventional cooling. Drainage channels and modular cooling construction effectively prevent crossflow and jet deflection, improving heat transfer and reducing leading-edge temperatures by at least 20 K with less cooling air, compared to the conventional impingement cooling scheme. Furthermore, the drainage channels combined with double-wall blade frame allows the reutilization of the cooling air from the leading edge, thereby enhancing coolant utilization. The impingement drainage cooling provides favorable information for turbine blade cooling design in gas turbines.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Numerical Investigation on Heat Transfer Characteristics of Single Jet Impingement Cooling
    Hong Zifeng
    Zhao Jing
    Li Yanjun
    Yang Longbin
    Zhu Weibing
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ARCHITECTURAL, CIVIL AND HYDRAULICS ENGINEERING (ICACHE 2015), 2016, 44 : 288 - 291
  • [42] Numerical study on characteristics of flow and heat transfer of steam vortex cooling for blade leading edges
    Du, Changhe
    Li, Sen
    Li, Liang
    Feng, Zhenping
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2015, 49 (10): : 72 - 78
  • [43] Numerical Study on Flow and Heat Transfer Characteristics of Multi-stage Impingement Cooling
    Wu, Hang
    Yang, Xing
    Liu, Zhao
    Feng, Zhenping
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2024, 45 (09): : 2622 - 2630
  • [44] NUMERICAL STUDY ON FLOW AND HEAT TRANSFER CHARACTERISTICS OF JET IMPINGEMENT
    Wang, Xinjun
    Liu, Rui
    Bai, Xiaowei
    Yao, Jinling
    PROCEEDINGS OF THE ASME TURBO EXPO 2011, VOL 5, PTS A AND B, 2012, : 1155 - 1164
  • [45] Flow Visualization and Heat Transfer Characteristics of Liquid Jet Impingement
    Jafar, Farial A.
    Thorpe, Graham R.
    Turan, Ozden F.
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2012, 13 (04): : 239 - 253
  • [46] Experimental investigation of film cooling heat transfer on turbine blade leading edge
    Northwestern Polytechnical Univ, Xi'an, China
    Tuijin Jishu, 2 (64-68):
  • [47] Leading edge film-cooling effects on turbine blade heat transfer
    Garg, VK
    Gaugler, RE
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 1996, 30 (02) : 165 - +
  • [48] Heat Transfer and Flow Characteristics of Channel Impingement Cooling Structure at Leading Edge Inside Turbine Blades Using Large Eddy Simulation
    Wang, Huihui
    Deng, Qinghua
    Feng, Zhenping
    ASME JOURNAL OF HEAT AND MASS TRANSFER, 2024, 146 (05):
  • [49] Experimental and Numerical Impingement Heat Transfer in an Airfoil Leading-Edge Cooling Channel With Cross-Flow
    Taslim, M. E.
    Bethka, D.
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2009, 131 (01):
  • [50] Numerical investigation on the flow and heat transfer characteristics of multi-stage impingement cooling under various jet hole arrangements
    Wang, Pengfei
    Wang, Pei
    Liu, Jiajie
    Liu, Jun
    Huang, Enliang
    Wang, Haohan
    Lu, Xingen
    Zhu, Junqiang
    APPLIED THERMAL ENGINEERING, 2025, 261