SparseDet: A Simple and Effective Framework for Fully Sparse LiDAR-Based 3-D Object Detection

被引:1
|
作者
Liu, Lin [1 ]
Song, Ziying [1 ]
Xia, Qiming [2 ]
Jia, Feiyang [1 ]
Jia, Caiyan [1 ]
Yang, Lei [3 ,4 ]
Gong, Yan [5 ]
Pan, Hongyu [6 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp Sci & Technol, Beijing Key Lab Traff Data Anal & Min, Beijing 100044, Peoples R China
[2] Xiamen Univ, Fujian Key Lab Sensing & Comp Smart Cities, Xiamen 361005, Fujian, Peoples R China
[3] Tsinghua Univ, State Key Lab Intelligent Green Vehicle & Mobil, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
[5] JD Logist, Autonomous Driving Dept X Div, Beijing 101111, Peoples R China
[6] Horizon Robot, Beijing 100190, Peoples R China
关键词
Feature extraction; Three-dimensional displays; Point cloud compression; Detectors; Aggregates; Object detection; Computational efficiency; 3-D object detection; feature aggregation; sparse detectors;
D O I
10.1109/TGRS.2024.3468394
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
LiDAR-based sparse 3-D object detection plays a crucial role in autonomous driving applications due to its computational efficiency advantages. Existing methods either use the features of a single central voxel as an object proxy or treat an aggregated cluster of foreground points as an object proxy. However, the former cannot aggregate contextual information, resulting in insufficient information expression in object proxies. The latter relies on multistage pipelines and auxiliary tasks, which reduce the inference speed. To maintain the efficiency of the sparse framework while fully aggregating contextual information, in this work, we propose SparseDet that designs sparse queries as object proxies. It introduces two key modules: the local multiscale feature aggregation (LMFA) module and the global feature aggregation (GFA) module, aiming to fully capture the contextual information, thereby enhancing the ability of the proxies to represent objects. The LMFA module achieves feature fusion across different scales for sparse key voxels via coordinate transformations and using nearest neighbor relationships to capture object-level details and local contextual information, whereas the GFA module uses self-attention mechanisms to selectively aggregate the features of the key voxels across the entire scene for capturing scene-level contextual information. Experiments on nuScenes and KITTI demonstrate the effectiveness of our method. Specifically, SparseDet surpasses the previous best sparse detector VoxelNeXt (a typical method using voxels as object proxies) by 2.2% mean average precision (mAP) with 13.5 frames/s on nuScenes and outperforms VoxelNeXt by 1.12% AP(3-D) on hard level tasks with 17.9 frames/s on KITTI. What is more, not only the mAP of SparseDet exceeds that of FSDV2 (a classical method using clusters of foreground points as object proxies) but also its inference speed is 1.3 times faster than FSDV2 on the nuScenes test set. The code has been released in https://github.com/liulin813/SparseDet.git.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] KPTr: Key point transformer for LiDAR-based 3D object detection
    Cao, Jie
    Peng, Yiqiang
    Wei, Hongqian
    Mo, Lingfan
    Fan, Likang
    Wang, Longfei
    MEASUREMENT, 2025, 242
  • [22] Aerial LiDAR-based 3D Object Detection and Tracking for Traffic Monitoring
    Cherif, Baya
    Ghazzai, Hakim
    Alsharoa, Ahmad
    Besbes, Hichem
    Massoud, Yehia
    2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [23] Adversarial Obstacle Generation Against LiDAR-Based 3D Object Detection
    Wang, Jian
    Li, Fan
    Zhang, Xuchong
    Sun, Hongbin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 2686 - 2699
  • [24] Density Awareness and Neighborhood Attention for LiDAR-Based 3D Object Detection
    Qian, Hanxiang
    Wu, Peng
    Sun, Xiaoyong
    Guo, Xiaojun
    Su, Shaojing
    PHOTONICS, 2022, 9 (11)
  • [25] LiDAR-Based Intensity-Aware Outdoor 3D Object Detection
    Naich, Ammar Yasir
    Carrion, Jesus Requena
    SENSORS, 2024, 24 (09)
  • [26] CluB: Cluster Meets BEV for LiDAR-Based 3D Object Detection
    Wang, Yingjie
    Deng, Jiajun
    Hou, Yuenan
    Li, Yao
    Zhang, Yu
    Ji, Jianmin
    Ouyang, Wanli
    Zhang, Yanyong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [27] Residual MBConv Submanifold Module for 3D LiDAR-based Object Detection
    Guo, Lie
    Huang, Liang
    Zhao, Yibing
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 1720 - 1724
  • [28] Fully Sparse 3D Object Detection
    Fan, Lue
    Wang, Feng
    Wang, Naiyan
    Zhang, Zhaoxiang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [29] On Onboard LiDAR-Based Flying Object Detection
    Vrba, Matous
    Walter, Viktor
    Pritzl, Vaclav
    Pliska, Michal
    Baca, Tomas
    Spurny, Vojtech
    Hert, Daniel
    Saska, Martin
    IEEE TRANSACTIONS ON ROBOTICS, 2025, 41 : 593 - 611
  • [30] A LIDAR-BASED 3D INDOOR MAPPING FRAMEWORK WITH MISMATCH DETECTION AND OPTIMIZATION
    Wang, Zhiyong
    Liu, Weiquan
    Wen, Chenglu
    Shi, Yongfei
    Yan, Xiaocheng
    Tan, Jinbin
    Wang, Cheng
    Li, Jonathan
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 7499 - 7502