Nonlinear regression in environmental sciences by support vector machines combined with evolutionary strategy

被引:0
|
作者
Lima, Aranildo R. [1 ]
Cannon, Alex J. [1 ,2 ]
Hsieh, William W. [1 ]
机构
[1] Department of Earth and Ocean Sciences, University of British Columbia, 6339 Stores Road, Vancouver, BC, V6T 1Z4, Canada
[2] Pacific Climate Impacts Consortium, University of Victoria, Uni-versity House1, PO Box 3060 Stn CSC, Victoria, BC, V8W3R4, Canada
来源
Computers and Geosciences | 2013年 / 50卷
关键词
Support vector regression;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:136 / 144
相关论文
共 50 条
  • [41] Incorporating invariances in nonlinear support vector machines
    Chapelle, O
    Schölkopf, B
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 609 - 616
  • [42] A Novel Smooth Support Vector Machines for Classification and Regression
    Dong, Jianmin
    Wang, Ruopeng
    ICCSSE 2009: PROCEEDINGS OF 2009 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION, 2009, : 12 - +
  • [43] Clifford Support Vector Machines for Classification, Regression, and Recurrence
    Bayro-Corrochano, Eduardo Jose
    Arana-Daniel, Nancy
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (11): : 1731 - 1746
  • [44] An ensemble of Weighted Support Vector Machines for Ordinal Regression
    Waegeman, Willem
    Boullart, Luc
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 12, 2006, 12 : 71 - 75
  • [45] Review of support vector machines regression theory and control
    Wang, Dingcheng
    Fang, Tingjian
    Tang, Yi
    Ma, Yongjun
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2003, 16 (02):
  • [46] Bouligand derivatives and robustness of support vector machines for regression
    Department of Mathematics, University of Bayreuth, D-95440 Bayreuth, Germany
    不详
    J. Mach. Learn. Res., 2008, (915-936):
  • [47] Support vector regression machines with given empirical risk
    Luo, Linkai
    Ye, Lingjun
    Peng, Hong
    Yang, Fan
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2010, 38 (10): : 47 - 51
  • [48] Calibration of ε - insensitive loss in support vector machines regression
    Tong, Hongzhi
    Ng, Michael K.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (04): : 2111 - 2129
  • [49] Rainfall Forecasting using Support Vector Regression Machines
    Velasco, Lemuel Clark
    Aca-ac, Johanne Miguel
    Cajes, Jeb Joseph
    Lactuan, Nove Joshua
    Chit, Suwannit Chareen
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (03) : 231 - 237
  • [50] Support vector machines regression and modeling of greenhouse environment
    Wang, Dingcheng
    Wang, Maohua
    Qiao, Xiaoiun
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2009, 66 (01) : 46 - 52