OBDD: Overlapping Balancing Domain Decomposition Methods and Generalizations to the Helmholtz Equation

被引:0
|
作者
Kimn, Jung-Han [1 ]
Sarkis, Marcus [2 ,3 ]
机构
[1] Department of Mathematics, Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, 70803, United States
[2] Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, Brazil
[3] Worcester Polytechnic Institute, Worcester, MA 01609, United States
关键词
10;
D O I
10.1007/978-3-540-34469-8_38
中图分类号
学科分类号
摘要
引用
收藏
页码:317 / 324
相关论文
共 50 条
  • [41] ON THE RELATIONSHIP BETWEEN OVERLAPPING AND NONOVERLAPPING DOMAIN DECOMPOSITION METHODS
    CHAN, TF
    GOOVAERTS, D
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (02) : 663 - 670
  • [42] Overlapping domain decomposition methods for finite volume discretizations
    Zhang, Jinjin
    Su, Yanru
    Gao, Xinfeng
    Tu, Xuemin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 174 : 510 - 529
  • [43] Overlapping and nonoverlapping domain decomposition methods for image restoration
    Zohra, Zeghbib Fatima
    Messaoud, Maouni
    Zohra, Nouri Fatma
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 40 (10): : 123 - 128
  • [44] OVERLAPPING DOMAIN DECOMPOSITION METHODS FOR LINEAR INVERSE PROBLEMS
    Jiang, Daijun
    Feng, Hui
    Zou, Jun
    INVERSE PROBLEMS AND IMAGING, 2015, 9 (01) : 163 - 188
  • [45] Spurious Field Suppression in Overlapping Domain Decomposition Methods
    Peng, T.
    Sertel, K.
    Volakis, J. L.
    2012 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2012, : 981 - 982
  • [46] Convergence Analysis of the Continuous and Discrete Non-overlapping Double Sweep Domain Decomposition Method Based on PMLs for the Helmholtz Equation
    Seungil Kim
    Hui Zhang
    Journal of Scientific Computing, 2021, 89
  • [47] Convergence Analysis of the Continuous and Discrete Non-overlapping Double Sweep Domain Decomposition Method Based on PMLs for the Helmholtz Equation
    Kim, Seungil
    Zhang, Hui
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (02)
  • [48] On the use of rational iterations and domain decomposition methods for the Helmholtz problem
    Kim, S
    NUMERISCHE MATHEMATIK, 1998, 79 (04) : 529 - 552
  • [49] Corners and stable optimized domain decomposition methods for the Helmholtz problem
    B. Després
    A. Nicolopoulos
    B. Thierry
    Numerische Mathematik, 2021, 149 : 779 - 818
  • [50] Corners and stable optimized domain decomposition methods for the Helmholtz problem
    Despres, B.
    Nicolopoulos, A.
    Thierry, B.
    NUMERISCHE MATHEMATIK, 2021, 149 (04) : 779 - 818