Design and Demonstration of Pouch-Type Lithium-Air Batteries

被引:0
|
作者
Mohanan Pillai, Akhilash [1 ,2 ]
Anoopkumar, V. [1 ]
Salini, Patteth S. [1 ]
Bhardwaj, Vinay Mohan [3 ]
John, Bibin [1 ]
Sarojiniamma, Sujatha [1 ]
Thelakkattu Devassy, Mercy [4 ]
机构
[1] Vikram Sarabhai Space Ctr, Energy Syst Dev Div, Energy Syst Grp, PCM Ent, Thiruvananthapuram 695022, Kerala, India
[2] Govt Higher Secondary Sch, Kollam 691306, Kerala, India
[3] Vikram Sarabhai Space Ctr, Fuel Cell Dev Div, Energy Syst Grp, PCM Ent, Thiruvananthapuram 695022, Kerala, India
[4] Vikram Sarabhai Space Ctr, Energy Syst Grp, PCM Ent, Thiruvananthapuram 695022, Kerala, India
关键词
ELECTROLYTE; DISCHARGE; CATALYSTS; ELECTROCATALYSTS; PROMISE;
D O I
10.1021/acs.energyfuels.4c03560
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The present study reports the design of pouch-type lithium-air batteries (LABs) and the evaluation of their electrochemical performance. The air cathode consists of a mixture of ketjen black (KB) powder, Pt/IrO2 catalyst, and binder coated over carbon paper. In the first part, the electrochemical performance of the KB:Pt/IrO2 electrode was evaluated at the coin-cell level, and the results indicate that the cell with the KB:Pt/IrO2 electrode demonstrated 300 cycles before reaching the upper cutoff voltage (4.5 V). The excellent electrochemical performance at the coin-cell level motivated us to design pouch-type cells. The overall capacity of the pouch cell was 0.75 mAh, and the cell demonstrated 465 cycles. Destructive physical analysis (DPA) was conducted on the cycled pouch-type LABs to analyze the products on the surfaces of the cathode, anode, and separator through XRD, SEM, and FT-IR analyses, and the recovered cathode was successfully reused in coin cells.
引用
收藏
页码:23768 / 23775
页数:8
相关论文
共 50 条
  • [11] Lithium anode for lithium-air secondary batteries
    Imanishi, Nobuyuki
    Hasegawa, Satoshi
    Zhang, Tao
    Hirano, Atushi
    Takeda, Yasuo
    Yamamoto, Osamu
    JOURNAL OF POWER SOURCES, 2008, 185 (02) : 1392 - 1397
  • [12] Deterioration behavior of aluminum pouch film used as packaging materials for pouch-type lithium-ion batteries
    Park, Bo Keun
    Jeong, Yeon Kyeong
    Yang, So Yeon
    Kwon, Soyeon
    Yang, Jin Hyeok
    Kim, Yong Min
    Kim, Ki Jae
    JOURNAL OF POWER SOURCES, 2021, 506 (506)
  • [13] Lithium-air and lithium-sulfur batteries
    Peter G. Bruce
    Laurence J. Hardwick
    K. M. Abraham
    MRS Bulletin, 2011, 36 : 506 - 512
  • [14] Catalysis studies and electrode design considerations for Lithium-air batteries
    Lu, Yi-Chun
    Harding, Jonathon R.
    Tsukada, Yasuhiro
    Gasteiger, Hubert A.
    Shao-Horn, Yang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [15] Aqueous Lithium-Air Rechargeable Batteries
    Imanishi, Nobuyuki
    Takeda, Yasuo
    Yamamoto, Osamu
    ELECTROCHEMISTRY, 2012, 80 (10) : 706 - 715
  • [16] Lithium-Air Batteries with Hybrid Electrolytes
    He, Ping
    Zhang, Tao
    Jiang, Jie
    Zhou, Haoshen
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (07): : 1267 - 1280
  • [17] Microelectrode Diagnostics of Lithium-Air Batteries
    Gunasekara, Iromie
    Mukerjee, Sanjeev
    Plichta, Edward J.
    Hendrickson, Mary A.
    Abraham, K. M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (03) : A381 - A392
  • [18] Lithium-air batteries go viral
    Bradley, David
    MATERIALS TODAY, 2014, 17 (01) : 9 - 9
  • [19] Electrolytes for Rechargeable Lithium-Air Batteries
    Lai, Jingning
    Xing, Yi
    Chen, Nan
    Li, Li
    Wu, Feng
    Chen, Renjie
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (08) : 2974 - 2997
  • [20] Protected anodes for lithium-air batteries
    Aleshin, Gleb Yu.
    Semenenko, Dmitry A.
    Belova, Alina I.
    Zakharchenko, Tatyana K.
    Itkis, Daniil M.
    Goodilin, Eugene A.
    Tretyakov, Yurii D.
    SOLID STATE IONICS, 2011, 184 (01) : 62 - 64