Multilayer feed-forward artificial neural networks for class modeling

被引:0
|
作者
Marini, Federico [1 ]
Magrì, Antonio L. [1 ]
Bucci, Remo [1 ]
机构
[1] Dipartimento di Chimica, Università di Roma La Sapienza, P.le Aldo Moro 5, I-00185 Rome, Italy
关键词
36;
D O I
10.1016/j.chemolab.2006.09.003
中图分类号
学科分类号
摘要
引用
收藏
页码:43 / 49
相关论文
共 50 条
  • [31] An improved butterfly optimization algorithm for training the feed-forward artificial neural networks
    Irmak, Busra
    Karakoyun, Murat
    Gulcu, Saban
    SOFT COMPUTING, 2023, 27 (07) : 3887 - 3905
  • [32] An improved butterfly optimization algorithm for training the feed-forward artificial neural networks
    Büşra Irmak
    Murat Karakoyun
    Şaban Gülcü
    Soft Computing, 2023, 27 : 3887 - 3905
  • [33] A numerical verification method for multi-class feed-forward neural networks
    Grimm, Daniel
    Tollner, David
    Kraus, David
    Torok, Arpad
    Sax, Eric
    Szalay, Zsolt
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 247
  • [34] A NOVEL METHOD WITH MULTILAYER FEED-FORWARD NEURAL NETWORK FOR MODELING OUTPUT YIELD IN AGRICULTURE
    Taki, Morteza
    Haddad, Meisam
    INTERNATIONAL JOURNAL OF MODERN AGRICULTURE, 2012, 1 (01): : 13 - 23
  • [35] Quantum implementation of an artificial feed-forward neural network
    Tacchino, Francesco
    Barkoutsos, Panagiotis
    Macchiavello, Chiara
    Tavernelli, Ivano
    Gerace, Dario
    Bajoni, Daniele
    QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (04)
  • [36] Hybridization of the probabilistic neural networks with feed-forward neural networks for forecasting
    Khashei, Mehdi
    Bijari, Mehdi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2012, 25 (06) : 1277 - 1288
  • [37] Checking the performance of feed-forward and cascade artificial neural networks for modeling the surface tension of binary hydrocarbon mixtures
    Hamed Amouei Ojaki
    Mostafa Lashkarbolooki
    Kamyar Movagharnejad
    Journal of the Iranian Chemical Society, 2023, 20 : 655 - 667
  • [38] MODELING OF AN INDUSTRIAL PROCESS OF PLEUROMUTILIN FERMENTATION USING FEED-FORWARD NEURAL NETWORKS
    Khaouane, L.
    Benkortbi, O.
    Hanini, S.
    Si-Moussa, C.
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2013, 30 (01) : 105 - 116
  • [39] Checking the performance of feed-forward and cascade artificial neural networks for modeling the surface tension of binary hydrocarbon mixtures
    Ojaki, Hamed Amouei
    Lashkarbolooki, Mostafa
    Movagharnejad, Kamyar
    JOURNAL OF THE IRANIAN CHEMICAL SOCIETY, 2023, 20 (03) : 655 - 667
  • [40] Applicability of feed-forward and recurrent neural networks to Boolean function complexity modeling
    Beg, Azam
    Prasad, P. W. Chandana
    Beg, Ajmal
    EXPERT SYSTEMS WITH APPLICATIONS, 2008, 34 (04) : 2436 - 2443