Diminishing spectral bias in physics-informed neural networks using spatially-adaptive Fourier feature encoding

被引:0
|
作者
Liu, Yarong [1 ]
Gu, Hong [1 ]
Yu, Xiangjun [2 ]
Qin, Pan [1 ]
机构
[1] Dalian Univ Technol, Sch Control Sci & Engn, Dalian 116014, Liaoning, Peoples R China
[2] Dalian Naval Acad, Dept Mil Oceanog & Hydrog, Dalian 116018, Liaoning, Peoples R China
关键词
Partial differential equations; Physics-informed neural networks; Spectral bias; Fourier feature mapping;
D O I
10.1016/j.neunet.2024.106886
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Physics-informed neural networks (PINNs) have recently emerged as a promising framework for solving partial differential equation (PDE) systems in computer mechanics. However, PINNs still struggle in simulating systems whose solution functions exhibit high-frequency patterns, especially incases with wide frequency spectrums. Current methods apply Fourier feature mappings to the input to improve the learning ability of model on high-frequency components. However, they are largely problem-dependent which require proper selection of hyperparameters and introduces additional training difficulty into the optimization. To this end, we present a spatially adaptive Fourier feature encoding method accompanied by a tree-based sampling strategy in this work. Specifically, we propose to guide the Fourier feature mappings of input by gradually exposing the input coordinate from low to higher encoding frequencies during training through the feedback loop of loss. Meanwhile, we also propose to refine the sampling of residual points by presenting a novel tree-based sampling strategy. This method represents the input domain by a tree and formulates the sampling of residual points as a resource allocation problem which optimizes the sampling of residual points during training and assigns more computational capacity to the underfit region. The effectiveness of our proposed method is demonstrated in several challenging PDE problems, including Poisson equation, heat equation, Navier-Stokes equations, Reynolds-Averaged Navier-Stokes equations, and Maxwell equation. The results indicate that our method can better allocate the computational resources during training and enable the model to fit the local frequencies of target function adaptively.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Combined analysis of thermofluids and electromagnetism using physics-informed neural networks
    Jeong, Yeonhwi
    Jo, Junhyoung
    Lee, Tonghun
    Yoo, Jihyung
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [42] Quantification of gradient energy coefficients using physics-informed neural networks
    Shang, Lan
    Zhao, Yunhong
    Zheng, Sizheng
    Wang, Jin
    Zhang, Tongyi
    Wang, Jie
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 273
  • [43] Solving groundwater flow equation using physics-informed neural networks
    Cuomo, Salvatore
    De Rosa, Mariapia
    Giampaolo, Fabio
    Izzo, Stefano
    Di Cola, Vincenzo Schiano
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 145 : 106 - 123
  • [44] Modeling of the Forward Wave Propagation Using Physics-Informed Neural Networks
    Alkhadhr, Shaikhah
    Liu, Xilun
    Almekkawy, Mohamed
    INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS 2021), 2021,
  • [45] Asian Option Pricing Using the Physics-Informed Neural Networks Method
    Park, Sungwon
    Moon, Kyoung-Sook
    Kim, Hongjoong
    ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, 2025, 59 (01): : 5 - 20
  • [46] Parameter Identification in Manufacturing Systems Using Physics-Informed Neural Networks
    Khalid, Md Meraj
    Schenkendorf, Rene
    ADVANCES IN ARTIFICIAL INTELLIGENCE IN MANUFACTURING, ESAIM 2023, 2024, : 51 - 60
  • [47] Optimizing Variational Physics-Informed Neural Networks Using Least Squares
    Uriarte, Carlos
    Bastidas, Manuela
    Pardo, David
    Taylor, Jamie M.
    Rojas, Sergio
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 185 : 76 - 93
  • [48] Multiphysics generalization in a polymerization reactor using physics-informed neural networks
    Ryu, Yubin
    Shin, Sunkyu
    Lee, Won Bo
    Na, Jonggeol
    CHEMICAL ENGINEERING SCIENCE, 2024, 298
  • [49] Quasinormal modes in modified gravity using physics-informed neural networks
    Luna, Raimon
    Doneva, Daniela D.
    Font, Jose A.
    Lien, Jr-Hua
    Yazadjiev, Stoytcho S.
    PHYSICAL REVIEW D, 2024, 109 (12)
  • [50] Damage identification for plate structures using physics-informed neural networks
    Zhou, Wei
    Xu, Y. F.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 209