Zero-day malware detection based on supervised learning algorithms of API call signatures

被引:0
|
作者
Alazab, Mamoun [1 ]
Venkatraman, Sitalakshmi [1 ]
Watters, Paul [1 ]
Alazab, Moutaz [2 ]
机构
[1] Internet Commerce Security Laboratory, School of Science, Information Technology and Engineering, University of Ballarat, Australia
[2] School of Information Technology, Deakin University, Australia
关键词
D O I
暂无
中图分类号
学科分类号
摘要
39
引用
收藏
页码:171 / 182
相关论文
共 50 条
  • [21] PlausMal-GAN: Plausible Malware Training Based on Generative Adversarial Networks for Analogous Zero-Day Malware Detection
    Won, Dong-Ok
    Jang, Yong-Nam
    Lee, Seong-Whan
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2023, 11 (01) : 82 - 94
  • [22] Malware-SMELL: A zero-shot learning strategy for detecting zero-day vulnerabilities
    Barros, Pedro H.
    Chagas, Eduarda T. C.
    Oliveira, Leonardo B.
    Queiroz, Fabiane
    Ramos, Heitor S.
    COMPUTERS & SECURITY, 2022, 120
  • [23] Zero-day Malware Detection using Threshold-free Autoencoding Architecture
    Kim, Chiho
    Chang, Sang-Yoon
    Kim, Jonghyun
    Lee, Dongeun
    Kim, Jinoh
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 1279 - 1284
  • [24] Zero-day malware detection using transferred generative adversarial networks based on deep autoencoders
    Kim, Jin-Young
    Bu, Seok-Jun
    Cho, Sung-Bae
    INFORMATION SCIENCES, 2018, 460 : 83 - 102
  • [25] Zero-Day Malware Detection and Effective Malware Analysis Using Shapley Ensemble Boosting and Bagging Approach
    Kumar, Rajesh
    Subbiah, Geetha
    SENSORS, 2022, 22 (07)
  • [26] ZeVigilante: Detecting Zero-Day Malware Using Machine Learning and Sandboxing Analysis Techniques
    Alhaidari, Fahd
    Shaib, Nouran Abu
    Alsafi, Maram
    Alharbi, Haneen
    Alawami, Majd
    Aljindan, Reem
    Rahman, Atta-ur
    Zagrouba, Rachid
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [27] Adversarial Variational Modality Reconstruction and Regularization for Zero-Day Malware Variants Similarity Detection
    Molloy, Christopher
    Banks, Jeremy
    Ding, Steven H. H.
    Charland, Philippe
    Walenstein, Andrew
    Li, Litao
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 1131 - 1136
  • [28] Can Machine/Deep Learning Classifiers Detect Zero-Day Malware with High Accuracy?
    Abri, Faranak
    Siami-Namini, Sima
    Khanghah, Mandi Adl
    Soltani, Fahimch Mirza
    Namin, Akbar Siami
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 3252 - 3259
  • [29] Efficient detection of zero-day Android Malware using Normalized Bernoulli Naive Bayes
    Sayfullina, Luiza
    Eirola, Emil
    Komashinsky, Dmitry
    Palumbo, Paolo
    Miche, Yoan
    Lendasse, Amaury
    Karhunen, Juha
    2015 IEEE TRUSTCOM/BIGDATASE/ISPA, VOL 1, 2015, : 198 - 205
  • [30] API Call and Permission Based Mobile Malware Detection (In English)
    Aysin, Ahmet Ilhan
    Sen, Sevil
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 2400 - 2403