Reduced magnetization in magnetic oxide nanoparticles

被引:0
|
作者
Kim, T. [1 ]
Shima, M. [1 ]
机构
[1] Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
来源
Journal of Applied Physics | 2007年 / 101卷 / 09期
关键词
Magnetic oxide nanoparticles have been studied to elucidate the effects of nanoscale finite size on the magnetic behavior of the particles. Magnetite nanoparticles synthesized by coprecipitation show superparamagnetism at room temperature with reduced saturation magnetization MS. The MS value decreases and approaches zero with decreasing particle size. Yttrium iron garnet (YIG) nanoparticles also show a similar trend. The magnetization of nanoparticles estimated using the Langevin function with the particle size distribution indicates that the reduced magnetization can be consistently explained by the existence of a spin-disordered surface layer with the thickness of 1-2 nm. The results found in magnetite and YIG nanoparticles suggest that the reduced magnetization can be commonly observed among magnetic oxide nanoparticles due to the existence of spin disordered surface layer. © 2007 American Institute of Physics;
D O I
暂无
中图分类号
学科分类号
摘要
Conference article (CA)
引用
收藏
相关论文
共 50 条
  • [31] Static and dynamic magnetization models of magnetic nanoparticles: an appraisal
    Yari, Parsa
    Chugh, Vinit Kumar
    Saha, Renata
    Tonini, Denis
    Rezaei, Bahareh
    Mostufa, Shahriar
    Xu, Kanglin
    Wang, Jian-Ping
    Wu, Kai
    PHYSICA SCRIPTA, 2023, 98 (08)
  • [32] Observation of the Sagnac Effect in the Magnetization of Magnetic Nanoparticles in Water
    Watarai, Hitoshi
    Chen, Ziyu
    Chen, Siyu
    ANALYTICAL SCIENCES, 2016, 32 (07) : 715 - 717
  • [33] Classical relaxation of magnetization in magnetic nanoparticles in the Kelvin regime
    Mamiya, H
    Nakatani, I
    Furubayashi, T
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 272 : 1568 - 1570
  • [34] Dynamic magnetization process of magnetic nanoparticles for biomedical applications
    Takemura, Yasushi
    Trisnanto, Suko Bagus
    Ota, Satoshi
    Journal of the Magnetics Society of Japan, 2023, 47 (04): : 84 - 89
  • [35] Temperature-dependent magnetization dynamics of magnetic nanoparticles
    Sukhov, A.
    Berakdar, J.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (12)
  • [36] Magnetic nanoparticles in oxide glasses
    Edelman, I. S.
    Ivantsov, R. D.
    Vasil'eva, I. G.
    Vasil'ev, A. D.
    Bayukov, O. A.
    Ivanova, O. S.
    Prokof'ev, D. E.
    Stepanov, S. A.
    Kornilova, E. E.
    Zarubina, T. V.
    Malakhov, V. V.
    Zaikovskii, V. A.
    PHYSICS OF METALS AND METALLOGRAPHY, 2006, 102 (Suppl 1): : S2 - S7
  • [37] Determination of the anisotropy constant and saturation magnetization of magnetic nanoparticles from magnetization relaxation curves
    Volkov, Ivan
    Chukharkin, Maxim
    Snigirev, Oleg
    Volkov, Alexander
    Tanaka, Saburo
    Fourie, Coenrad
    JOURNAL OF NANOPARTICLE RESEARCH, 2008, 10 (03) : 487 - 497
  • [38] Determination of the anisotropy constant and saturation magnetization of magnetic nanoparticles from magnetization relaxation curves
    Ivan Volkov
    Maxim Chukharkin
    Oleg Snigirev
    Alexander Volkov
    Saburo Tanaka
    Coenrad Fourie
    Journal of Nanoparticle Research, 2008, 10 : 487 - 497
  • [39] Magnetic properties of graphite oxide and reduced graphene oxide
    Sarkar, S. K.
    Raul, K. K.
    Pradhan, S. S.
    Basu, S.
    Nayak, A.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2014, 64 : 78 - 82
  • [40] Fabrication of smart magnetite/reduced graphene oxide composite nanoparticles and their magnetic stimuli-response
    Hong, Cheng Hai
    Kim, Min Wook
    Zhang, Wen Ling
    Moon, Il Jae
    Choi, Hyoung Jin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2016, 481 : 194 - 200