Three-dimensional aerosol printing by enlarged, optimized and charged nanoparticles

被引:0
|
作者
Patarashvili, Anton [1 ]
Fard, Mohammad Reza Ghorbani [1 ]
Efimov, Alexey [1 ]
Ivanov, Matthew [1 ]
Kameneva, Ekaterina [1 ]
Davydov, Vladislav [1 ]
Kornyushin, Denis [1 ]
Maslennikov, Dmitry [1 ]
Shishlyannikov, Anton [1 ]
Torgunakov, Vitaly [1 ]
Ivanov, Victor [1 ]
机构
[1] Natl Res Univ, Moscow Inst Phys & Technol, 9 Inst Per, Dolgoprudnyi 141701, Russia
基金
俄罗斯科学基金会;
关键词
Arrays; Additive manufacturing; Aerosol nanoparticles; Spark discharge synthesis; Aerosol charging; GAS-PHASE; DEPOSITION; PARTICLES; EMISSION;
D O I
10.1016/j.jaerosci.2024.106515
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The article explores the challenges and potential of creating micro-sized structures using metals and oxides with an aspect ratio of 1 in the field of printed electronics. Specifically, it focuses on the production of microstructures from loosely bonded metal particles with mean size from 30 to 80 nm. These conglomerates exhibit unique electrical and optical properties that differ from monolithic structures, making them a subject of special interest. The study introduces a system capable of producing porous microstructures on silicon substrates using spherical nanoparticles. This is achieved through a series of steps including synthesis, sintering, charging, and electrostatic focusing through a stainless steel ball grid array stencil. As a result, uniform Au microstructures each measuring approximately 25 mu m (through 280 mu m holes) are successfully printed across the entire surface of the stencil, which covers an area of about 0.7 cm2. Moreover, the potential applications are not limited to this achievement. Furthermore, the article provides experimental evidence supporting a hypothesis regarding the diffusion mechanism responsible for the broadening of the resulting structures. This mechanism is based on the theory of charge distribution among nanoparticles during the charging process in the corona discharge region. Additionally, the study demonstrates the deposition of nanoparticles made of Ag, ZnO and SnO2 oxides using the same method. The research presents the formation of an uncharacteristic pattern associated with this deposition method, where nanoparticles are deposited in a discrete manner rather than forming continuous structures. This finding adds to the understanding of the complex behavior of nanoparticles during the printing process and opens up new avenues for further investigation in the field of printed electronics.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Three-dimensional printing of scintillating materials
    Mishnayot, Y.
    Layani, M.
    Cooperstein, I.
    Magdassi, S.
    Ron, G.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (08):
  • [22] Three-dimensional printing for biomedical applications
    Conti, Michele
    Marconi, Stefania
    INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 2019, 42 (10): : 537 - 538
  • [23] Anticounterfeiting Options for Three-Dimensional Printing
    Flank, Sharon
    Ritchie, Gary E.
    Maksimovic, Rebecca
    3D PRINTING AND ADDITIVE MANUFACTURING, 2015, 2 (04) : 181 - 189
  • [24] Three-dimensional bio-printing
    GU Qi
    HAO Jie
    LU YangJie
    WANG Liu
    WALLACE Gordon G.
    ZHOU Qi
    Science China(Life Sciences), 2015, (05) : 411 - 419
  • [25] Three-dimensional bio-printing
    Gu Qi
    Hao Jie
    Lu YangJie
    Wang Liu
    Wallace, Gordon G.
    Zhou Qi
    SCIENCE CHINA-LIFE SCIENCES, 2015, 58 (05) : 411 - 419
  • [26] Three-dimensional printing of a bioactive glass
    Meszaros, Robert
    Zhao, Rong
    Travitzky, Nahum
    Fey, Tobias
    Greil, Peter
    Wondraczek, Lothar
    GLASS TECHNOLOGY-EUROPEAN JOURNAL OF GLASS SCIENCE AND TECHNOLOGY PART A, 2011, 52 (04): : 111 - 116
  • [27] Three-Dimensional Printing in Hand Surgery
    Zhang, Dafang
    Bauer, Andrea S.
    Blazar, Philip
    Earp, Brandon E.
    JOURNAL OF HAND SURGERY-AMERICAN VOLUME, 2021, 46 (11): : 1016 - 1022
  • [28] Three-dimensional printing models in surgery
    Wiesel, Ory
    Jaklitsch, Michael T.
    Fisichella, P. Marco
    SURGERY, 2016, 160 (03) : 815 - 817
  • [29] Three-dimensional printing of biological matters
    Munaz, Ahmed
    Vadivelu, Raja K.
    St John, James
    Barton, Matthew
    Kamble, Harshad
    Nam-Trung Nguyen
    JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES, 2016, 1 (01): : 1 - 17
  • [30] Three-dimensional Printing in Developing Countries
    Ibrahim, Ahmed M. S.
    Jose, Rod R.
    Rabie, Amr N.
    Gerstle, Theodore L.
    Lee, Bernard T.
    Lin, Samuel J.
    PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN, 2015, 3 (07)