Optimising maize threshing process with temporal proximity soft actor-critic deep reinforcement learning algorithm

被引:0
|
作者
Zhang, Qiang [1 ]
Fang, Xuwen [1 ]
Gao, Xiaodi [1 ,2 ]
Zhang, Jinsong [1 ]
Zhao, Xuelin [1 ]
Yu, Lulu [1 ]
Yu, Chunsheng [1 ]
Zhou, Deyi [1 ]
Zhou, Haigen [1 ]
Zhang, Li [1 ]
Wu, Xinling [1 ]
机构
[1] Jilin Univ, Coll Biol & Agr Engn, Changchun 130022, Peoples R China
[2] Jilin Jianzhu Univ, Sch Emergency Sci & Engn, Changchun 130118, Peoples R China
关键词
Threshing quality optimisation; Agricultural machinery; Machine learning; Agricultural automation; Sensitivity analysis; DAMAGE;
D O I
10.1016/j.biosystemseng.2024.11.001
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Maize threshing is a crucial process in grain production, and optimising it is essential for reducing post-harvest losses. This study proposes a model-based temporal proximity soft actor-critic (TP-SAC) algorithm to optimise the maize threshing process in the threshing drum. The proposed approach employs an LSTM model as a real-time predictor of threshing quality, achieving an R2 of 97.17% and 98.43% for damage and unthreshed rates on the validation set. In actual threshing experiments, the LSTM model demonstrates an average error of 5.45% and 3.83% for damage and unthreshed rates. The LSTM model is integrated with the TP-SAC algorithm, acting as the environment with which the TP-SAC interacts, enabling efficient training with limited real-world data. The TPSAC algorithm addresses the temporal correlation in the threshing process by incorporating temporal proximity sampling into the SAC algorithm's experience replay mechanism. TP-SAC outperforms the standard SAC algorithm in the simulated environment, demonstrating better sample efficiency and faster convergence. When deployed in actual threshing operations, the TP-SAC algorithm reduces the damage rate by an average of 0.91% across different feed rates compared to constant control. The proposed TP-SAC algorithm offers a novel and practical approach to optimising the maize threshing process, enhancing threshing quality.
引用
收藏
页码:229 / 239
页数:11
相关论文
共 50 条
  • [41] SAC-FACT: Soft Actor-Critic Reinforcement Learning for Counterfactual Explanations
    Ezzeddine, Fatima
    Ayoub, Omran
    Andreoletti, Davide
    Giordano, Silvia
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT I, 2023, 1901 : 195 - 216
  • [42] CONTROLLED SENSING AND ANOMALY DETECTION VIA SOFT ACTOR-CRITIC REINFORCEMENT LEARNING
    Zhong, Chen
    Gursoy, M. Cenk
    Velipasalar, Senem
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4198 - 4202
  • [43] A soft actor-critic deep reinforcement learning method for multi-timescale coordinated operation of microgrids
    Chunchao Hu
    Zexiang Cai
    Yanxu Zhang
    Rudai Yan
    Yu Cai
    Bowei Cen
    Protection and Control of Modern Power Systems, 2022, 7
  • [44] Reinforcement learning for automatic quadrilateral mesh generation: A soft actor-critic approach
    Pan, Jie
    Huang, Jingwei
    Cheng, Gengdong
    Zeng, Yong
    NEURAL NETWORKS, 2023, 157 : 288 - 304
  • [45] Symmetric actor-critic deep reinforcement learning for cascade quadrotor flight control
    Han, Haoran
    Cheng, Jian
    Xi, Zhilong
    Lv, Maolong
    NEUROCOMPUTING, 2023, 559
  • [46] Dynamic spectrum access and sharing through actor-critic deep reinforcement learning
    Liang Dong
    Yuchen Qian
    Yuan Xing
    EURASIP Journal on Wireless Communications and Networking, 2022
  • [47] Actor-Critic reinforcement learning based on prior knowledge
    Yang, Zhenyu, 1600, Transport and Telecommunication Institute, Lomonosova street 1, Riga, LV-1019, Latvia (18):
  • [48] Automatic collective motion tuning using actor-critic deep reinforcement learning
    Abpeikar, Shadi
    Kasmarik, Kathryn
    Garratt, Matthew
    Hunjet, Robert
    Khan, Md Mohiuddin
    Qiu, Huanneng
    SWARM AND EVOLUTIONARY COMPUTATION, 2022, 72
  • [49] Exponential TD Learning: A Risk-Sensitive Actor-Critic Reinforcement Learning Algorithm
    Noorani, Erfaun
    Mavridis, Christos N.
    Baras, John S.
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 4104 - 4109
  • [50] Variational value learning in advantage actor-critic reinforcement learning
    Zhang, Yaozhong
    Han, Jiaqi
    Hu, Xiaofang
    Dan, Shihao
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 1955 - 1960