Hyperbolic circle packings and total geodesic curvatures on surfaces with boundary

被引:0
|
作者
Hu, Guangming [1 ]
Qi, Yi [2 ]
Sun, Yu [3 ]
Zhou, Puchun [4 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Sci, Nanjing 210003, Peoples R China
[2] Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China
[3] Nanjing Inst Technol, Sch Math & Phys, Nanjing 211100, Peoples R China
[4] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
关键词
Circle packing; Hyperbolic geometry; Polygonal cellular decomposition; Ricci flow; Combinatorial Ricci flows; DISCRETE UNIFORMIZATION THEOREM; COMBINATORIAL RICCI FLOWS; POLYHEDRAL SURFACES; CONFORMAL VARIATIONS; YAMABE FLOW; RIGIDITY; PATTERNS;
D O I
10.1016/j.na.2024.113735
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates a generalized hyperbolic circle packing (including circles, horocycles or hypercycles) with respect to the total geodesic curvatures on the surface with boundary. We mainly focus on the existence and rigidity of circle packing whose contact graph is the 1skeleton of a finite polygonal cellular decomposition, which is analogous to the construction of Bobenko and Springborn (2004). Motivated by Colin de Verdiere's method (Colin de Verdiere's, 1991), we introduce the variational principle for generalized hyperbolic circle packings on polygons. By analyzing limit behaviors of generalized circle packings on polygons, we obtain an existence and rigidity for the generalized hyperbolic circle packing with conical singularities regarding the total geodesic curvature on each vertex of the contact graph. As a consequence, we introduce the combinatoral Ricci flow to find a desired circle packing with a prescribed total geodesic curvature on each vertex of the contact graph.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] CIRCLE PACKINGS AND POLYHEDRAL SURFACES
    GARRETT, BT
    DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 8 (04) : 429 - 440
  • [12] SECTIONAL CURVATURES OF GEODESIC SPHERES IN A COMPLEX HYPERBOLIC SPACE
    Kajiwara, Tetsuo
    Maeda, Sadahiro
    KODAI MATHEMATICAL JOURNAL, 2015, 38 (03) : 604 - 619
  • [13] Combinatorial p-th Calabi Flows for Total Geodesic Curvatures in Hyperbolic Background Geometry
    Hu, Guangming
    Lei, Ziping
    Qi, Yi
    Zhou, Puchun
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (01)
  • [14] Total scalar curvatures of geodesic spheres and of boundaries of geodesic disks
    Díaz-Ramos, JC
    García-Río, E
    Hervella, L
    COMPLEX, CONTACT AND SYMMETRIC MANIFOLDS: IN HONOR OF L. VANHECKE, 2005, 234 : 131 - 143
  • [15] GROUP-THEORY OF HYPERBOLIC CIRCLE PACKINGS
    BULLETT, S
    MANTICA, G
    NONLINEARITY, 1992, 5 (05) : 1085 - 1109
  • [16] Circle packings on surfaces with projective structures
    Kojima, S
    Mizushima, S
    Tan, SP
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2003, 63 (03) : 349 - 397
  • [17] THE ERDOS-KAC THEOREM FOR CURVATURES IN INTEGRAL APOLLONIAN CIRCLE PACKINGS
    Djankovic, Goran
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2011, 89 (103): : 11 - 17
  • [18] Apollonian circle packings: Number theory II. Spherical and hyperbolic packings
    Eriksson, Nicholas
    Lagarias, Jeffrey C.
    RAMANUJAN JOURNAL, 2007, 14 (03): : 437 - 469
  • [19] Apollonian circle packings: Number theory II. Spherical and hyperbolic packings
    Nicholas Eriksson
    Jeffrey C. Lagarias
    The Ramanujan Journal, 2007, 14 : 437 - 469
  • [20] Commensurability of Hyperbolic Manifolds with Geodesic Boundary
    Roberto Frigerio
    Geometriae Dedicata, 2006, 118 : 105 - 131