Advancements in membrane-less electrolysis configurations: Innovations and challenges

被引:0
|
作者
Kumar, K. Sravan [1 ]
Mateo, S. [2 ]
de la Osa, A. R. [1 ]
Sanchez, P. [1 ]
de Lucas-Consuegra, A. [1 ]
机构
[1] Univ Castilla La Mancha, Fac Chem Sci & Technol, Dept Chem Engn, Avda Camilo Jose Cela 12, E-13071 Ciudad Real, Spain
[2] Univ Complutense Madrid, Dept Chem Engn & Mat, Avda Complutense S-N, Madrid 28040, Spain
关键词
MICROBIAL FUEL-CELLS; HYDROGEN-PRODUCTION; WATER ELECTROLYSIS; FLOW; PERFORMANCE; COST;
D O I
10.1016/j.coelec.2024.101602
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ionic conductive membranes have provided significant advantages in low-temperature water electrolysis configurations, but their poor stability and high cost have prompted researchers to develop various types of membrane-less electrolysis configurations of reduced design complexity and lower costs. This paper reviews recent studies in the field, comparing the results obtained with different approaches and critically advising about the main advantages and challenges to be overcome. Notable among these is the electrolyte flow- by strategy, which uses closely spaced planar electrodes and laminar flow to keep hydrogen and oxygen bubbles separated without a membrane. Various other approaches have also been investigated such as: flow-through electrodes, bubbles free gas diffusion electrodes, organic-assisted electrolysis process and microbial electrolysis cells. The different approaches discussed on the manuscript generates significant interest within the scientific community, offering an opportunity to simplify innovative electrolysis configurations addressing new scientific challenges associated with traditional electrolysis methods.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Electrochemical reforming of ethanol in a membrane-less reactor configuration
    Ruiz-Lopez, Estela
    Amores, Ernesto
    Raquel de la Osa, Ana
    Dorado, Fernando
    de Lucas-Consuegra, Antonio
    CHEMICAL ENGINEERING JOURNAL, 2020, 379
  • [22] Membrane-less amphoteric decoupled water electrolysis using WO3 and Ni(OH)2 auxiliary electrodes
    Vanags, Martins
    Kulikovskis, Guntis
    Kostjukovs, Juris
    Jekabsons, Laimonis
    Sarakovskis, Anatolijs
    Smits, Krisjanis
    Bikse, Liga
    Sutka, Andris
    ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (05) : 2021 - 2028
  • [23] Phase transitions and size scaling of membrane-less organelles
    Brangwynne, Clifford P.
    JOURNAL OF CELL BIOLOGY, 2013, 203 (06): : 875 - 881
  • [24] First membrane-less fuel-cell hailed
    不详
    TCE, 2005, (767): : 16 - 16
  • [25] Membrane-Less Hydrogen Iron Redox Flow Battery
    Marma, Kyamra
    Kolli, Jayanth
    Cho, Kyu Taek
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2019, 16 (01)
  • [26] Intrinsically Disordered Proteome of Human Membrane-Less Organelles
    Darling, April L.
    Liu, Yun
    Oldfield, Christopher J.
    Uversky, Vladimir N.
    PROTEOMICS, 2018, 18 (5-6)
  • [27] A novel membrane-less direct alcohol fuel cell
    Yi, Qingfeng
    Chen, Qinghua
    Yang, Zheng
    JOURNAL OF POWER SOURCES, 2015, 298 : 171 - 176
  • [28] Membrane-less variable focus liquid lens with manual actuation
    Patra, Roshan
    Agarwal, Shivam
    Kondaraju, Sasidhar
    Bahga, Supreet Singh
    OPTICS COMMUNICATIONS, 2017, 389 : 74 - 78
  • [29] Negri bodies and other virus membrane-less replication compartments
    Nevers, Quentin
    Albertini, Aurelie A.
    Lagaudriere-Gesbert, Cecile
    Gaudin, Yves
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2020, 1867 (12):
  • [30] Behavior of copper in membrane-less sediment microbial fuel cell
    Li, Xiufen
    Mu, Shujun
    Ren, Yueping
    Wang, Xinhua
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2017, 9 (02)