Drift change point estimation in autocorrelated poisson count processes using MLE approach

被引:0
|
作者
Ashuri, A. [1 ]
Amiri, A. [1 ]
机构
[1] Industrial Engineering Department, Faculty of Engineering, Shahed University, Tehran, Iran
关键词
D O I
暂无
中图分类号
学科分类号
摘要
29
引用
收藏
页码:1056 / 1063
相关论文
共 50 条
  • [31] Equivalence theory for density estimation, Poisson processes and Gaussian white noise with drift
    Brown, LD
    Carter, AV
    Low, MG
    Zhang, CH
    ANNALS OF STATISTICS, 2004, 32 (05): : 2074 - 2097
  • [32] Change point estimation for monotonically changing Poisson rates in SPC
    Perry, Marcus B.
    Pignatiello, Joseph J., Jr.
    Simpson, James R.
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2007, 45 (08) : 1791 - 1813
  • [33] Estimating the change point of the cumulative count of a conforming control chart under a drift
    Amiri, Amirhossein
    Khosravi, Ramezan
    SCIENTIA IRANICA, 2012, 19 (03) : 856 - 861
  • [34] Estimation of Count Data using Mixed Poisson, Generalized Poisson and Finite Poisson Mixture Regression Models
    Zamani, Hossein
    Faroughi, Pouya
    Ismail, Noriszura
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES, 2014, 1602 : 1144 - 1150
  • [35] Multiscale change-point analysis of inhomogeneous Poisson processes using unbalanced wavelet decompositions
    Jansen, M
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2004, 2006, 8 : 595 - 599
  • [36] TRANSFORMING SPATIAL POINT PROCESSES INTO POISSON PROCESSES USING RANDOM SUPERPOSITION
    Moller, Jesper
    Berthelsen, Kasper K.
    ADVANCES IN APPLIED PROBABILITY, 2012, 44 (01) : 42 - 62
  • [37] A Combined MLE and Generalized P Chart Approach to Estimate the Change Point of a Multinomial Process
    Hou, Chia-Ding
    Shao, Yuehjen E.
    Huang, Sheng
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (04): : 1487 - 1493
  • [38] CARDINALITY ESTIMATION FOR RANDOM STOPPING SETS BASED ON POISSON POINT PROCESSES
    Privault, Nicolas
    ESAIM-PROBABILITY AND STATISTICS, 2021, 25 : 87 - 108
  • [39] Concentration inequalities for Poisson point processes with application to adaptive intensity estimation
    Kroll, M.
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2023, 95 (01) : 54 - 66
  • [40] Spatial logistic regression and change-of-support in Poisson point processes
    Baddeley, A.
    Berman, M.
    Fisher, N. I.
    Hardegen, A.
    Milne, R. K.
    Schuhmacher, D.
    Shah, R.
    Turner, R.
    ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 1151 - 1201