Enhanced decomposition of benzene by non-thermal atmospheric pressure plasma with oxidized titanium electrode

被引:0
|
作者
Faculty of Science and Technology, Seikei University, 3-3-1, Kichijoji-kitamachi, Musashino [1 ]
180-8633, Japan
机构
来源
IEEJ Trans. Fundam. Mater. | / 1卷 / 17-21期
关键词
Atmospheric pressure plasmas - Benzene decomposition - Electrode temperature - Non-thermal atmospheric pressure - Photo-catalytic - Photocatalytic effect - Specific energy density - TiO2;
D O I
10.1541/ieejfms.135.17
中图分类号
学科分类号
摘要
A method is proposed for decomposing volatile organic compounds by atmospheric pressure non-thermal plasma with photocatalytic effects. We tried benzene decomposition by using an atmospheric pressure plasma system with an inner electrode made of stainless, titanium, and oxidized titanium. The electrode temperature was controlled typically between 100°C and 300°C. Dry air including benzene with a content of 1000 ppm was introduced into the plasma reactor. The benzene decomposition rate with the titanium electrode was higher than that with the stainless electrode. The benzene decomposition rate with the oxidized titanium electrode was higher than that with the titanium electrode. We consider that the enhanced benzene decomposition reaction with the oxidized titanium electrode is due to the photocatalytic effect of the oxidized layer. A specific energy density below 1800 J/L is required to achieve a benzene decomposition rate of 95%. © 2015 The Institute of Electrical Engineers of Japan.
引用
收藏
相关论文
共 50 条
  • [21] NON-THERMAL PLASMA AT ATMOSPHERIC PRESSURE AND ITS OPPORTUNITIES FOR APPLICATIONS
    Akishev, Yu. S.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA, 2019, 62 (08): : 26 - 60
  • [22] Thomson scattering on non-thermal atmospheric pressure plasma jets
    Huebner, Simon
    Sousa, Joao Santos
    van der Mullen, Joost
    Graham, William G.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2015, 24 (05):
  • [23] ATMOSPHERIC PRESSURE NON-THERMAL PLASMA FOR THE PRODUCTION OF COMPOSITE MATERIALS
    Bloise, Nora
    Sampaolesi, Maurilio
    Visai, Livia
    Colombo, V.
    Gherardi, M.
    Focarete, M. L.
    Gualandi, C.
    Laurita, R.
    Liguori, A.
    Mauro, Nicolo
    Manfredi, Amedea
    Ferruti, Paolo
    Ranucci, Elisabetta
    2015 42ND IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCES (ICOPS), 2015,
  • [24] A dc non-thermal atmospheric-pressure plasma microjet
    Zhu, WeiDong
    Lopez, Jose L.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2012, 21 (03):
  • [25] The chemistry of methane remediation by a non-thermal atmospheric pressure plasma
    Pringle, KJ
    Whitehead, JC
    Wilman, JJ
    Wu, JH
    PLASMA CHEMISTRY AND PLASMA PROCESSING, 2004, 24 (03) : 421 - 434
  • [26] NON-THERMAL PLASMA AT ATMOSPHERIC PRESSURE: SYSTEM DESIGN AND DEVELOPMENT
    Gopi, Supin
    Sarma, Arun
    Patel, Ashish
    Ravi, G.
    INSTRUMENTATION SCIENCE & TECHNOLOGY, 2013, 41 (06) : 651 - 665
  • [27] A new type of non-thermal atmospheric pressure plasma source
    Tikhonov, V. N.
    Ivanov, I. A.
    Tikhonov, A. V.
    14TH INTERNATIONAL CONFERENCE GAS DISCHARGE PLASMAS AND THEIR APPLICATIONS, 2019, 1393
  • [28] DC non-thermal atmospheric-pressure plasma jet generated using a syringe needle electrode
    Matra, Khanit
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (07)
  • [29] Decomposition of benzene using non-thermal plasma reactor packed with ferroelectric pellet
    Ogata, A
    Shintani, N
    Mizuno, K
    Kushiyama, S
    Yamamoto, T
    IAS '97 - CONFERENCE RECORD OF THE 1997 IEEE INDUSTRY APPLICATIONS CONFERENCE / THIRTY-SECOND IAS ANNUAL MEETING, VOLS 1-3, 1997, : 1975 - 1982
  • [30] Plasma Thorns: Atmospheric Pressure Non-Thermal Plasma Source for Dentistry Applications
    Liang, Yongdong
    Li, Yinglong
    Sun, Ke
    Zhang, Qian
    Li, Wei
    Zhu, Weidong
    Zhang, Jue
    Fang, Jing
    PLASMA PROCESSES AND POLYMERS, 2015, 12 (10) : 1069 - 1074