An attention-guided multi-scale fusion network for surgical instrument segmentation

被引:0
|
作者
Song, Mengqiu [1 ]
Zhai, Chenxu [1 ]
Yang, Lei [1 ]
Liu, Yanhong [1 ]
Bian, Guibin [2 ]
机构
[1] Zhengzhou Univ, Sch Elect & Informat Engn, Zhengzhou 450001, Henan, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
关键词
Surgical instrument segmentation; Dual attention fusion; Context feature fusion; Adaptive multi-scale feature fusion;
D O I
10.1016/j.bspc.2024.107296
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In contemporary surgical practice, minimally invasive surgery has significantly alleviated the physiological and psychological strain on patients while dramatically curtailing their recovery periods. Within the realm of robot-assisted minimally invasive surgery, the precise segmentation of surgical instruments assumes paramount importance, as it not only enhances the precision with which surgeons execute surgical maneuvers but also fortifies the overall perioperative safety of patients. Despite these benefits, the accurate segmentation of surgical instruments remains beset by a multitude of challenges, emanating primarily from the intricacy of the surgical milieu, specular reflection, diverse instruments, etc. To efficaciously confront these challenges, this paper introduces a novel attention-guided multi-scale fusion network. Specifically, to facilitate effective feature representation, an effective backbone network leveraging Octave convolution is constructed to mitigate feature redundancy. Simultaneously, the encoding path incorporates the Transformer module into bottleneck layer to infuse global contextual information, thereby synergistically capturing both global and local feature information. Moreover, a dual attention fusion block and a context feature fusion block are ingeniously integrated into the skip connections to refine local features, to meticulously discern edge details and effectively suppress the interference of useless information. Lastly, this paper presents an adaptive multi-Scale feature weighting block, which adeptly fuses multi-scale features from disparate layers within the decoding path. To rigorously substantiate the performance of proposed model, comprehensive experimentation is conducted on two widely recognized benchmark datasets. The results reach a Dice score of 96.34% and a mIOU value of 96.14% on kvasir-instrument dataset. Meanwhile, it also reaches a Dice score of 97.31% and a mIOU value of 96.15% on Endovis2017 dataset. Experiments show that it attests to the substantial superiority of proposed network in terms of accuracy and robustness against with advanced segmentation models. Therefore, proposed model could offer a promising solution to enhance the precision and safety of robot-assisted minimally invasive surgeries.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Collaborative Attention Guided Multi-Scale Feature Fusion Network for Medical Image Segmentation
    Xu, Zhenghua
    Tian, Biao
    Liu, Shijie
    Wang, Xiangtao
    Yuan, Di
    Gu, Junhua
    Chen, Junyang
    Lukasiewicz, Thomas
    Leung, Victor C. M.
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (02): : 1857 - 1871
  • [22] Attention-Guided Multi-modal and Multi-scale Fusion for Multispectral Pedestrian Detection
    Bao, Wei
    Huang, Meiyu
    Hu, Jingjing
    Xiang, Xueshuang
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2022, 2022, 13534 : 382 - 393
  • [23] Deformable image registration with attention-guided fusion of multi-scale deformation fields
    Zhiquan He
    Yupeng He
    Wenming Cao
    Applied Intelligence, 2023, 53 : 2936 - 2950
  • [24] Deformable image registration with attention-guided fusion of multi-scale deformation fields
    He, Zhiquan
    He, Yupeng
    Cao, Wenming
    APPLIED INTELLIGENCE, 2023, 53 (03) : 2936 - 2950
  • [25] A Multi-Scale Attention Fusion Network for Retinal Vessel Segmentation
    Wang, Shubin
    Chen, Yuanyuan
    Yi, Zhang
    APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [26] MSCF-Net: Attention-Guided Multi-Scale Context Feature Network for Ship Segmentation in Surveillance Videos
    Jiang, Xiaodan
    Ding, Xiajun
    Jiang, Xiaoliang
    MATHEMATICS, 2024, 12 (16)
  • [27] TMA-Net: A Transformer-Based Multi-Scale Attention Network for Surgical Instrument Segmentation
    Yang, Lei
    Wang, Hongyong
    Gu, Yuge
    Bian, Guibin
    Liu, Yanhong
    Yu, Hongnian
    IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2023, 5 (02): : 323 - 334
  • [28] ADMNet: Attention-Guided Densely Multi-Scale Network for Lightweight Salient Object Detection
    Zhou, Xiaofei
    Shen, Kunye
    Liu, Zhi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 10828 - 10841
  • [29] Multi-Scale Attention-Guided Non-Local Network for HDR Image Reconstruction
    Yoon, Howoon
    Uddin, S. M. Nadim
    Jung, Yong Ju
    SENSORS, 2022, 22 (18)
  • [30] Multi-scale feature fusion network with local attention for lung segmentation
    Xie, Yinghua
    Zhou, Yuntong
    Wang, Chen
    Ma, Yanshan
    Yang, Ming
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 119