Large global solutions to the three dimensional compressible flow of liquid crystals

被引:4
|
作者
Zhai, Xiaoping [1 ]
机构
[1] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510520, Peoples R China
关键词
Compressible flow of liquid crystals; Global large solutions; Littlewood-paley theory; NAVIER-STOKES EQUATIONS; INCOMPRESSIBLE LIMIT; WELL-POSEDNESS; CRITICAL SPACES; WEAK SOLUTIONS; ENERGY;
D O I
10.1016/j.na.2024.113657
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to provide a class of large initial data which generates global solutions of the compressible flow of liquid crystals in R 3 . This class of data relax the smallness restriction imposed on the initial incompressible velocity. Moreover, the result improve considerably the work by Hu and Wu [SIAM J. Math. Anal., 45 (2013), 2678-2699].
引用
收藏
页数:18
相关论文
共 50 条
  • [41] GLOBAL STRONG SOLUTIONS OF THE COMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOW WITH THE CYLINDER SYMMETRY
    Tao, Qiang
    Gao, Jincheng
    Yao, Zheng-An
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (08) : 2065 - 2096
  • [42] Global small solutions of the compressible nematic liquid crystal flow in a bounded domain
    Fan, Jishan
    Sun, Jianzhu
    Tang, Tong
    Nakamura, Gen
    ANNALES POLONICI MATHEMATICI, 2020, 124 (01) : 47 - 59
  • [43] Global Classical and Weak Solutions to the Three-Dimensional Full Compressible Navier–Stokes System with Vacuum and Large Oscillations
    Xiangdi Huang
    Jing Li
    Archive for Rational Mechanics and Analysis, 2018, 227 : 995 - 1059
  • [44] Incompressible Limit for the Compressible Flow of Liquid Crystals
    Dehua Wang
    Cheng Yu
    Journal of Mathematical Fluid Mechanics, 2014, 16 : 771 - 786
  • [45] Incompressible Limit for the Compressible Flow of Liquid Crystals
    Wang, Dehua
    Yu, Cheng
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2014, 16 (04) : 771 - 786
  • [46] GLOBAL LARGE SOLUTIONS FOR THE COMPRESSIBLE MAGNETOHYDRODYNAMIC SYSTEM
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (06) : 1521 - 1537
  • [47] Global large solutions to the two-dimensional compressible Navier-Stokes equations
    Zhai, Xiaoping
    Chen, Zhi-Min
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (02):
  • [48] GLOBAL EXISTENCE OF WEAK SOLUTIONS TO THE THREE-DIMENSIONAL FULL COMPRESSIBLE QUANTUM EQUATIONS
    Boling Guo
    Binqiang Xie
    Annals of Applied Mathematics, 2018, 34 (01) : 1 - 31
  • [49] GLOBAL WEAK SOLUTIONS TO A THREE-DIMENSIONAL COMPRESSIBLE NON-NEWTONIAN FLUID
    Fang, L., I
    Guo, Z. H. E. N. H. U. A.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2022, 20 (06) : 1703 - 1733
  • [50] Stationary Solutions to the Three-Dimensional Compressible Nonisothermal Nematic Liquid Crystal Flows
    Cui, Wanchen
    Cai, Hong
    ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022