Comparison of guaranteed lower eigenvalue bounds with three

被引:0
|
作者
Carstensen, Carsten [1 ]
Graessle, Benedikt [2 ]
Pirch, Emilie [3 ]
机构
[1] Humboldt Univ, Inst Math, D-10117 Berlin, Germany
[2] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[3] Friedrich Schiller Univ Jena, Inst Math, D-07743 Jena, Germany
关键词
A posteriori error control; Eigenvalues; Guaranteed lower bounds; Adaptive algorithm; Competition; Higher order; HHO; Weak Galerkin; HDG;
D O I
10.1016/j.cma.2024.117477
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Specially tailored skeletal schemes enable cell and face variables linked with a stabilisation and a fine-tuned parameter can provide guaranteed lower eigenvalue bounds for the Laplacian. This paper briefly presents a unified derivation of skeletal higher-order methods from Carstensen, Zhai, and Zhang (2020), Carstensen, Ern, and Puttkammer (2021), and Carstensen, Gr & auml;ss le, and Tran (2024). It suggests a paradigm shift from conditional to unconditional lower eigenvalue bounds. Adaptive mesh-refining leads to optimal convergence rates in computational benchmark examples and underlines the superiority of higher-order methods.
引用
收藏
页数:15
相关论文
共 50 条