Comparison of guaranteed lower eigenvalue bounds with three

被引:0
|
作者
Carstensen, Carsten [1 ]
Graessle, Benedikt [2 ]
Pirch, Emilie [3 ]
机构
[1] Humboldt Univ, Inst Math, D-10117 Berlin, Germany
[2] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[3] Friedrich Schiller Univ Jena, Inst Math, D-07743 Jena, Germany
关键词
A posteriori error control; Eigenvalues; Guaranteed lower bounds; Adaptive algorithm; Competition; Higher order; HHO; Weak Galerkin; HDG;
D O I
10.1016/j.cma.2024.117477
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Specially tailored skeletal schemes enable cell and face variables linked with a stabilisation and a fine-tuned parameter can provide guaranteed lower eigenvalue bounds for the Laplacian. This paper briefly presents a unified derivation of skeletal higher-order methods from Carstensen, Zhai, and Zhang (2020), Carstensen, Ern, and Puttkammer (2021), and Carstensen, Gr & auml;ss le, and Tran (2024). It suggests a paradigm shift from conditional to unconditional lower eigenvalue bounds. Adaptive mesh-refining leads to optimal convergence rates in computational benchmark examples and underlines the superiority of higher-order methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Guaranteed lower eigenvalue bounds for the biharmonic equation
    Carstensen, Carsten
    Gallistl, Dietmar
    NUMERISCHE MATHEMATIK, 2014, 126 (01) : 33 - 51
  • [2] Guaranteed lower eigenvalue bounds for the biharmonic equation
    Carsten Carstensen
    Dietmar Gallistl
    Numerische Mathematik, 2014, 126 : 33 - 51
  • [3] Adaptive guaranteed lower eigenvalue bounds with optimal convergence rates
    Carsten Carstensen
    Sophie Puttkammer
    Numerische Mathematik, 2024, 156 : 1 - 38
  • [4] Adaptive guaranteed lower eigenvalue bounds with optimal convergence rates
    Carstensen, Carsten
    Puttkammer, Sophie
    NUMERISCHE MATHEMATIK, 2024, 156 (01) : 1 - 38
  • [5] GUARANTEED EIGENVALUE BOUNDS FOR THE STEKLOV EIGENVALUE PROBLEM
    You, Chun'guang
    Xie, Hehu
    Liu, Xuefeng
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 1395 - 1410
  • [6] Guaranteed lower eigenvalue bounds for two spectral problems arising in fluid mechanics
    Zhang, Yuy
    Yang, Yidu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 90 : 66 - 72
  • [7] Adaptive hybrid high-order method for guaranteed lower eigenvalue bounds
    Carstensen, Carsten
    Graessle, Benedikt
    Tran, Ngoc Tien
    NUMERISCHE MATHEMATIK, 2024, 156 (03) : 813 - 851
  • [8] Guaranteed Lower Eigenvalue Bounds for Steklov Operators Using Conforming Finite Element Methods
    Nakano, Taiga
    Li, Qin
    Yue, Meiling
    Liu, Xuefeng
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024, 24 (02) : 487 - 502
  • [9] GUARANTEED LOWER BOUNDS FOR EIGENVALUES
    Carstensen, Carsten
    Gedicke, Joscha
    MATHEMATICS OF COMPUTATION, 2014, 83 (290) : 2605 - 2629
  • [10] DIRECT GUARANTEED LOWER EIGENVALUE BOUNDS WITH OPTIMAL A PRIORI CONVERGENCE RATES FOR THE BI-LAPLACIAN
    Carstensen, Carsten
    Puttkammer, Sophie
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (02) : 812 - 836