Deep reinforcement learning in real-time strategy games: a systematic literature review

被引:1
|
作者
Barros e Sa, Gabriel Caldas [1 ]
Madeira, Charles Andrye Galvao [1 ]
机构
[1] Fed Univ Rio Grande do Norte UFRN, Digital Metropole Inst IMD, Campus Univ Cent UFRN, BR-59078900 Natal, RN, Brazil
关键词
Real-time strategy games; Deep reinforcement learning; Systematic literature review; Agent architectures; MODEL; AI;
D O I
10.1007/s10489-024-06220-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reinforcement learning is a field of Machine Learning in which agents learn from interacting with the environment. These agents can deal with more complex problems when their decision-making process is combined with deep learning. While deep reinforcement learning can be used in many real-world applications, games often provide a good source of simulation environments for testing such algorithms. Among all game categories, real-time strategy games usually pose a difficult challenge since they have large state and action spaces, partial observation maps, sparse reward, and Multi-Agent problems, where the events occur continuously simultaneously. Thus, this paper provides a systematic literature review of deep reinforcement learning related to real-time strategy games. The main goals of this review are presented as follows: (a) identify the games used in recent works; (b) summarize the architectures and techniques used; (c) identify the simulation environments adopted and (d) understand whether the works focus on micromanagement or macromanagement tasks when dealing with real-time strategy games. The results show that some architectures have achieved better performance overall when handling both micro and macromanagement tasks, and that techniques for reducing the training time and the state space may improve the agents learning. This paper may help to guide future research on developing strategies to build agents for complex scenarios such as those faced in real-time strategy games.Graphical abstractVisual summary of the Systematic Literature Review methodology and results. It presents the objective of the review, the research questions, the protocol parameters and criteria, and the results
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Deep RTS: A Game Environment for Deep Reinforcement Learning in Real-Time Strategy Games
    Andersen, Per-Arne
    Goodwin, Morten
    Granmo, Ole-Christoffer
    PROCEEDINGS OF THE 2018 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND GAMES (CIG'18), 2018, : 149 - 156
  • [2] Enhancing deep reinforcement learning for scale flexibility in real-time strategy games
    Lemos, Marcelo Luiz Harry Diniz
    Vieira, Ronaldo Silva
    Tavares, Anderson Rocha
    Marcolino, Leandro Soriano
    Chaimowicz, Luiz
    ENTERTAINMENT COMPUTING, 2025, 52
  • [3] EXPERIMENTS WITH ONLINE REINFORCEMENT LEARNING IN REAL-TIME STRATEGY GAMES
    Andersen, Kresten Toftgaard
    Zeng, Yifeng
    Christensen, Dennis Dahl
    Tran, Dung
    APPLIED ARTIFICIAL INTELLIGENCE, 2009, 23 (09) : 855 - 871
  • [4] A Systematic Review of Coevolution in Real-Time Strategy Games
    Elfeky, Ehab Z.
    Elsayed, Saber
    Marsh, Luke
    Essam, Daryl
    Cochrane, Madeleine
    Sims, Brendan
    Sarker, Ruhul
    IEEE ACCESS, 2021, 9 : 136647 - 136665
  • [5] Tabular Reinforcement Learning in Real-Time Strategy Games via Options
    Tavares, Anderson R.
    Chaimowicz, Luiz
    PROCEEDINGS OF THE 2018 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND GAMES (CIG'18), 2018, : 229 - 236
  • [6] Scale-Invariant Reinforcement Learning in Real-Time Strategy Games
    Diniz Lemos, Marcelo Luiz Harry
    Vieira, Ronaldo e Silva
    Rocha Tavares, Anderson
    Soriano Marcolino, Leandro
    Chaimowicz, Luiz
    PROCEEDINGS OF THE 22ND BRAZILIAN SYMPOSIUM ON COMPUTER GAMES AND DIGITAL ENTERTAINMENT, SBGAMES, 2023, 2023, : 11 - 19
  • [7] Towards safe and sustainable reinforcement learning for real-time strategy games
    Andersen, Per-Arne
    Goodwin, Morten
    Granmo, Ole-Christoffer
    INFORMATION SCIENCES, 2024, 679
  • [8] Deep Reinforcement Learning for Green Security Games with Real-Time Information
    Wang, Yufei
    Shi, Zheyuan Ryan
    Yu, Lantao
    Wu, Yi
    Singh, Rohit
    Joppa, Lucas
    Fang, Fei
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 1401 - 1408
  • [9] Learning in Real-time Strategy Games
    Padmanabhan, Vineet
    Goud, Pranay
    Pujari, Arun K.
    Sethy, Harshit
    2015 14TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY (ICIT 2015), 2015, : 165 - 170
  • [10] Improved Reinforcement Learning in Asymmetric Real-time Strategy Games via Strategy Diversity
    Dasgupta, Prithviraj
    Kliem, John
    INTERNATIONAL JOURNAL OF SERIOUS GAMES, 2023, 10 (01): : 19 - 38