Multi-mode dynamic residual graph convolution network for traffic flow prediction

被引:0
|
作者
Huang, Xiaohui [1 ]
Ye, Yuming [1 ]
Ding, Weihua [1 ]
Yang, Xiaofei [2 ]
Xiong, Liyan [1 ]
机构
[1] Department of Information Engineering, East China Jiaotong University, Jiangxi, China
[2] Faculty of Science and Technology, University of Macau, Macau, China
基金
中国国家自然科学基金;
关键词
Dynamic graph - Graph convolution network - Mode dynamics - Multi-mode fusion - Multimodes - Spatio-temporal data - Traffic flow - Traffic flow prediction - Urban development - Urban traffic congestion;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:548 / 564
相关论文
共 50 条
  • [31] Spatial-Temporal Complex Graph Convolution Network for Traffic Flow Prediction
    Bao, Yinxin
    Huang, Jiashuang
    Shen, Qinqin
    Cao, Yang
    Ding, Weiping
    Shi, Zhenquan
    Shi, Quan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 121
  • [32] Survey On Traffic Flow Prediction Methods Based On Graph Convolution Neural Network
    Gao, Yi
    Wang, Xiaomeng
    SEVENTH INTERNATIONAL CONFERENCE ON TRAFFIC ENGINEERING AND TRANSPORTATION SYSTEM, ICTETS 2023, 2024, 13064
  • [33] Spatial-Temporal Residual Multi-Graph Convolution Network for Traffic Forecasting
    Xi'an Jiaotong University, School of Computer Science and Technology, Xi'an, China
    不详
    IEEE Int. Conf. Data Sci. Adv. Anal., DSAA - Proc., 2023,
  • [34] DMGCRN: Dynamic multi-graph convolution recurrent network for traffic forecasting
    Qin, Yanjun
    Fang, Yuchen
    Luo, Haiyong
    Zhao, Fang
    Wang, Chenxing
    arXiv, 2021,
  • [35] Dynamic Spatiotemporal Graph Wavelet Network for Traffic Flow Prediction
    Xu, Weijian
    Liu, Jingjin
    Yan, Jingwen
    Yang, Juan
    Liu, Huifen
    Zhou, Teng
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (05): : 8019 - 8029
  • [36] Contrastive learning for traffic flow forecasting based on multi graph convolution network
    Guo, Kan
    Tian, Daxin
    Hu, Yongli
    Sun, Yanfeng
    Qian, Zhen
    Zhou, Jianshan
    Gao, Junbin
    Yin, Baocai
    IET INTELLIGENT TRANSPORT SYSTEMS, 2024, 18 (02) : 290 - 301
  • [37] TADGCN: A Time-Aware Dynamic Graph Convolution Network for long-term traffic flow prediction
    Wang, Chen
    Zuo, Kaizhong
    Zhang, Shaokun
    Liu, Chunyang
    Peng, Hao
    Li, Wenjie
    Shen, Zhangyi
    Hu, Peng
    Wang, Rui
    Jie, Biao
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 258
  • [38] Graph Convolution Network for Urban Mobile Traffic Prediction
    Yu, Changliang
    Ye, Zhiyang
    Zhao, Nan
    ADVANCES IN INTELLIGENT NETWORKING AND COLLABORATIVE SYSTEMS (INCOS-2021), 2022, 312 : 218 - 224
  • [39] MD-GCN: A Multi-Scale Temporal Dual Graph Convolution Network for Traffic Flow Prediction
    Huang, Xiaohui
    Wang, Junyang
    Lan, Yuanchun
    Jiang, Chaojie
    Yuan, Xinhua
    SENSORS, 2023, 23 (02)
  • [40] Prediction of a multi-mode coupling model based on traffic flow tensor data
    Duan, Huiming
    Liu, Yongzhi
    Wang, Di
    He, Leiyuhang
    Xiao, Xinping
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (02) : 1691 - 1703