Explicit solution for time-fractional batch reactor system

被引:0
|
作者
Khan N.A. [1 ]
Jamil M. [2 ]
Ara A. [1 ]
Das S. [3 ]
机构
[1] University of Karachi, Pakistan
[2] GC University, Pakistan
[3] Banaras Hindu University, India
关键词
batch reactor; fractional differential equation (FDE); new homotopy perturbation method (NHPM);
D O I
10.2202/1542-6580.2602
中图分类号
学科分类号
摘要
In this paper, the new homotopy perturbation method (NHPM) has been successively applied for finding approximate analytical solutions of the fractional order batch reactor system. An approximate analytical solution for the concentration of reactants and products that is valid for a time interval. The approximate analytical procedure is depends only on two components. The behavior of the solution and effects of different parameters and fractional index are shown graphically. Numerical solutions of ordinary batch reactor system verify our approximate solution with good agreement. © 2011 The Berkeley Electronic Press. All rights reserved.
引用
收藏
相关论文
共 50 条
  • [21] Existence and uniqueness of the solution for a time-fractional diffusion equation
    J. Kemppainen
    Fractional Calculus and Applied Analysis, 2011, 14 : 411 - 417
  • [22] Solution method for the time-fractional hyperbolic heat equation
    Dassios, Ioannis
    Font, Francesc
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (15) : 11844 - 11855
  • [23] Fundamental solution of the time-fractional telegraph Dirac operator
    Ferreira, M.
    Rodrigues, M. M.
    Vieira, N.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7033 - 7050
  • [24] Boundary Integral Solution of the Time-Fractional Diffusion Equation
    Kemppainen, J.
    Ruotsalainen, K.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2009, 64 (02) : 239 - 249
  • [25] A Numerical Method for the Solution of the Time-Fractional Diffusion Equation
    Ferras, Luis L.
    Ford, Neville J.
    Morgado, Maria L.
    Rebelo, Magda
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT 1, 2014, 8579 : 117 - 131
  • [26] Stochastic solution to a time-fractional attenuated wave equation
    Mark M. Meerschaert
    Peter Straka
    Yuzhen Zhou
    Robert J. McGough
    Nonlinear Dynamics, 2012, 70 : 1273 - 1281
  • [27] Numerical solution of time-fractional Black–Scholes equation
    Miglena N. Koleva
    Lubin G. Vulkov
    Computational and Applied Mathematics, 2017, 36 : 1699 - 1715
  • [28] Stochastic solution to a time-fractional attenuated wave equation
    Meerschaert, Mark M.
    Straka, Peter
    Zhou, Yuzhen
    McGough, Robert J.
    NONLINEAR DYNAMICS, 2012, 70 (02) : 1273 - 1281
  • [29] EXISTENCE AND UNIQUENESS OF THE SOLUTION FOR A TIME-FRACTIONAL DIFFUSION EQUATION
    Kemppainen, J.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (03) : 411 - 417
  • [30] Analytical Solution of Time-Fractional Advection Dispersion Equation
    Salim, Tariq O.
    El-Kahlout, Ahmad
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2009, 4 (01): : 176 - 188