Global and local information-aware relational graph convolutional network for temporal knowledge graph completion

被引:0
|
作者
Wang, Shuo [1 ]
Chen, Shuxu [1 ]
Zhong, Zhaoqian [1 ]
机构
[1] Dalian Univ, Key Lab Adv Design & Intelligent Comp, Minist Educ, Dalian 116622, Peoples R China
基金
中国国家自然科学基金;
关键词
Temporal knowledge graph; Link prediction; Representation learning; Graph neural network;
D O I
10.1007/s10489-024-05987-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Temporal knowledge graph completion (TKGC) focuses on inferring missing facts from temporal knowledge graphs (TKGs) and has been widely studied. While previous models based on graph neural networks (GNNs) have shown noteworthy outcomes, they tend to focus on designing complex modules to learn contextual representations. These complex solutions require a large number of parameters and heavy memory consumption. Additionally, existing TKGC approaches focus on exploiting static feature representation for entities and relationships, which fail to effectively capture the semantic information of contexts. In this paper, we propose a global and local information-aware relational graph convolutional neural network (GLARGCN) model to address these issues. First, we design a sampler, which captures significant neighbors by combining global historical event frequencies with local temporal relative displacements and requires no additional learnable parameters. We then employ a time-aware encoder to model timestamps, relations, and entities uniformly. We perform a graph convolution operation to learn a global graph representation. Finally, our method predicts missing entities using a scoring function. We evaluate the model on four benchmark datasets and one specific dataset with unseen timestamps. The experimental results demonstrate that our proposed GLARGCN model not only outperforms contemporary models but also shows robust performance in scenarios with unseen timestamps.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Structure-Aware Transformer for hyper-relational knowledge graph completion
    Wang, Junjie
    Chen, Huajun
    Zhang, Wen
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 277
  • [32] Feature Interactive Convolutional Network with Structure-Aware Information for Knowledge Graph Embedding
    Li, Jiachuan
    Li, Aimin
    Liu, Xiaohan
    Liu, Teng
    Li, Jing
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [33] Mixed-Curvature Multi-Relational Graph Neural Network for Knowledge Graph Completion
    Wang, Shen
    Wei, Xiaokai
    dos Santos, Cicero Nogueira
    Wang, Zhiguo
    Nallapati, Ramesh
    Arnold, Andrew
    Xiang, Bing
    Yu, Philip S.
    Cruz, Isabel F.
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 1761 - 1771
  • [34] TARGAT: A Time-Aware Relational Graph Attention Model for Temporal Knowledge Graph Embedding
    Xie, Zhiwen
    Zhu, Runjie
    Liu, Jin
    Zhou, Guangyou
    Huang, Jimmy Xiangji
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2023, 31 : 2246 - 2258
  • [35] Spatial-Temporal Attention Network for Temporal Knowledge Graph Completion
    Zhang, Jiasheng
    Liang, Shuang
    Deng, Zhiyi
    Shao, Jie
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT I, 2021, 12681 : 207 - 223
  • [36] Spatial and Temporal Aware Graph Convolutional Network for Flood Forecasting
    Feng, Jun
    Wang, Zhongyi
    Wu, Yirui
    Xi, Yuqi
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [37] KLGCN: Knowledge graph-aware Light Graph Convolutional Network for recommender systems
    Wang, Fei
    Li, Yansheng
    Zhang, Yongjun
    Wei, Dong
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 195
  • [38] Relational Message Passing for Knowledge Graph Completion
    Wang, Hongwei
    Ren, Hongyu
    Leskovec, Jure
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 1697 - 1707
  • [39] An Embedding Model for Knowledge Graph Completion Based on Graph Sub-Hop Convolutional Network
    He, Haitao
    Niu, Haoran
    Feng, Jianzhou
    Nie, Junlan
    Zhang, Yangsen
    Ren, Jiadong
    BIG DATA RESEARCH, 2022, 30
  • [40] SANe: Space adaptation network for temporal knowledge graph completion
    Li, Yancong
    Zhang, Xiaoming
    Zhang, Bo
    Huang, Feiran
    Chen, Xiaopeng
    Lu, Ming
    Ma, Shuai
    INFORMATION SCIENCES, 2024, 667