Performance analysis of machine learning algorithms for intrusion detection in MANETs

被引:0
|
作者
机构
[1] Jiang, Yibo
[2] Wang, Yu-Chen
[3] Wang, Wan-Liang
[4] Zhang, Zhen
[5] Chen, Qiong
来源
Jiang, Y. (jyb106@zjut.edu.cn) | 1600年 / Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland卷 / 06期
关键词
Classification models - MANETs - Network traffic - Performance analysis - Security problems - Simulation parameters - Training data;
D O I
10.1504/IJWMC.2013.057396
中图分类号
学科分类号
摘要
Mobile Ad-hoc network (MANET) has become an important technology in recent years and the corresponding security problems are getting more and more attention. In this paper, we apply seven well-known machine learning algorithms to detect intrusions in MANETs. We have generated training data under various simulation parameters. We also propose a new measure method which uses five new features to represent the network traffic. The analysis results show that the multilayer perceptron, logistic regression and Support Vector Machine (SVM) have the best performance and the logistic regression and SVM also get very little time to train the classification model. Copyright © 2013 Inderscience Enterprises Ltd.
引用
收藏
相关论文
共 50 条
  • [21] Investigations on Classification Algorithms for Intrusion Detection System in MANETS
    Anusha, K.
    Ezhilmaran, D.
    2014 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATION AND COMPUTATIONAL ENGINEERING (ICECCE), 2014, : 216 - 219
  • [22] Performance Comparison of Intrusion Detection System using Three Different Machine Learning Algorithms
    Ibrahim, Zena Khalid
    Thanon, Mohammed Younis
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2021), 2021, : 1116 - 1124
  • [23] Performance Enhancement of Intrusion Detection System Using Machine Learning Algorithms with Feature Selection
    Raju, Anuradha Samkham
    Rashid, Md Mamunur
    Sabrina, Fariza
    2021 31ST INTERNATIONAL TELECOMMUNICATION NETWORKS AND APPLICATIONS CONFERENCE (ITNAC), 2021, : 34 - 39
  • [24] Network Intrusion Detection Using Machine Learning Anomaly Detection Algorithms
    Hanifi, Khadija
    Bank, Hasan
    Karsligil, M. Elif
    Yavuz, A. Gokhan
    Guvensan, M. Amac
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [25] Performance Analysis of Network Intrusion Detection System using Machine Learning
    Alsaeedi, Abdullah
    Khan, Mohammad Zubair
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (12) : 671 - 678
  • [26] Evaluation of Machine Learning Algorithms for Intrusion Detection System in WSN
    Alsahli, Mohammed S.
    Almasri, Marwah M.
    Al-Akhras, Mousa
    Al-Issa, Abdulaziz I.
    Alawairdhi, Mohammed
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (05) : 617 - 626
  • [27] Network Intrusion Detection on Apache Spark with Machine Learning Algorithms
    Kurt, Elif Merve
    Becerikli, Yasar
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2018, 2018, 893 : 130 - 141
  • [28] Intrusion Detection System Based on Machine Learning Algorithms: A Review
    Amanoul, Sandy Victor
    Abdulazeez, Adnan Mohsin
    2022 IEEE 18TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & APPLICATIONS (CSPA 2022), 2022, : 79 - 84
  • [29] Intrusion Detection in Computer Networks based on Machine Learning Algorithms
    Osareh, Alireza
    Shadgar, Bita
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2008, 8 (11): : 15 - 23
  • [30] Intrusion Detection System using Aggregation of Machine Learning Algorithms
    Arivarasan, K.
    Obaidat, Mohammad S.
    2022 INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION AND TELECOMMUNICATION SYSTEMS, CITS, 2022, : 123 - 130