Symmetric and quasi-symmetric functions associated to polymatroids

被引:0
|
作者
Derksen, Harm [1 ]
机构
[1] Department of Mathematics, University of Michigan, East Hall, 530 Church Street, Ann Arbor, MI 48109-1043, United States
来源
Journal of Algebraic Combinatorics | 2009年 / 30卷 / 01期
关键词
To every subspace arrangement X we will associate symmetric functions ℘[X] and ℋ [X]. These symmetric functions encode the Hilbert series and the minimal projective resolution of the product ideal associated to the subspace arrangement. They can be defined for discrete polymatroids as well. The invariant ℋ [X] specializes to the Tutte polynomial {T X] . Billera; Jia and Reiner recently introduced a quasi-symmetric function F [X] (for matroids) which behaves valuatively with respect to matroid base polytope decompositions. We will define a quasi-symmetric function {G}{X} for polymatroids which has this property as well. Moreover; {G}}{X} specializes to ℘ [X; ℋ; X; {T}{X} and F [X]. © 2008 Springer Science+Business Media; LLC;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
页码:43 / 86
相关论文
共 50 条
  • [21] Binary shuffle bases for quasi-symmetric functions
    Jean-Christophe Novelli
    Jean-Yves Thibon
    The Ramanujan Journal, 2016, 40 : 207 - 225
  • [22] Quantum quasi-symmetric functions and Hecke algebras
    Thibon, J.-Y.
    Ung, B.-C.-V.
    Journal of Physics A: Mathematical and General, 29 (22):
  • [23] ASYMPTOTIC EXTREMAL GROWTH OF QUASI-SYMMETRIC FUNCTIONS
    HINKKANEN, A
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1986, 11 (02): : 295 - 319
  • [24] Ideals and quotients of diagonally quasi-symmetric functions
    Li, Shu Xiao
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (03):
  • [25] Binary shuffle bases for quasi-symmetric functions
    Novelli, Jean-Christophe
    Thibon, Jean-Yves
    RAMANUJAN JOURNAL, 2016, 40 (01): : 207 - 225
  • [26] Quantum quasi-symmetric functions and Hecke algebras
    Thibon, JY
    Ung, BCV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (22): : 7337 - 7348
  • [27] A Noncommutative Cycle Index and New Bases of Quasi-symmetric Functions and Noncommutative Symmetric Functions
    Novelli, Jean-Christophe
    Thibon, Jean-Yves
    Toumazet, Frederic
    ANNALS OF COMBINATORICS, 2020, 24 (03) : 557 - 576
  • [28] A Noncommutative Cycle Index and New Bases of Quasi-symmetric Functions and Noncommutative Symmetric Functions
    Jean-Christophe Novelli
    Jean-Yves Thibon
    Frédéric Toumazet
    Annals of Combinatorics, 2020, 24 : 557 - 576
  • [29] Quasi-symmetric embeddings
    Aseev V.V.
    Journal of Mathematical Sciences, 2002, 108 (3) : 375 - 410
  • [30] Dual bases for noncommutative symmetric and quasi-symmetric functions via monoidal factorization
    Bui, V. C.
    Duchamp, G. H. E.
    Minh, V. Hoang Ngoc
    Kane, L.
    Tollu, C.
    JOURNAL OF SYMBOLIC COMPUTATION, 2016, 75 : 56 - 73