Enhanced bifunctional visible-light-driven photocatalytic production of H2 and H2O2 enabled by Ag-ZnIn2S4/C-In2O3 S-scheme heterojunction

被引:0
|
作者
Lei, Tao [1 ,2 ]
Zhan, Xiaoqiang [2 ]
Yuan, Zihao [2 ]
Wang, Zhaoyuan [2 ]
Yang, Hongli [2 ]
Zhang, Dongdong [2 ]
Li, Ying [1 ]
Yang, Weiyou [2 ]
Lin, Genwen [1 ]
Hou, Huilin [2 ]
机构
[1] Shanghai Univ, Inst Mat, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[2] Ningbo Univ Technol, Inst Micro Nano Mat & Devices, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
MOF-derived; Bifunctional photocatalyst; Heterojunction; Doping; H; 2; evolution; O; production; HYDROGEN EVOLUTION; CHARGE-TRANSFER; H-2; EVOLUTION; PERFORMANCE; WATER; ARCHITECTURE; NANOSHEETS; JUNCTIONS;
D O I
10.1016/j.seppur.2024.130474
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Multifunctional photocatalysts are recognized as efficient solutions to complex energy and environmental challenges. In this study, we report the rationally-designed bifunctional photocatalysts of Ag-ZnIn2S4/C-In2O3 (AgZISCIO) with S-scheme heterojunction and defect engineering, for highly efficient production of both hydrogen and hydrogen peroxide production. The heterojunction is established by growing ZnIn2S4 (ZIS) nanosheets on MOF-derived C-doped In2O3 (CIO) nanorods, which favors the formation of built-in electric field, thus facilitating effective photogenerated charge separation. Moreover, by introducing Ag ions into ZIS lattice via a cation exchange reaction, abundant active sites would be created for inducing defects on the heterojunction surface, thereby enhancing the kinetics of oxidation-reduction processes. Under visible-light irradiation, the resultant AgZISCIO photocatalysts exhibit remarkable hydrogen and hydrogen peroxide production rates of 3.19 mmol center dot g- 1 center dot h- 1 and 2.42 mmol center dot g- 1 center dot h- 1, respectively, outperforming those of most In2O3-based photocatalysts reported recently. It is witnessed that the overall enhanced photocatalytic performance could be mainly attributed to the formed S-scheme heterojunction and defect creation for improved photogenerated charge separation and redox capabilities. This work underscores the importance of dual modulation of heterojunctions and defect engineering as an effective strategy for enhancing photocatalytic performance, providing some valuable insights for developing advanced multifunctional photocatalysts.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Synergistic Interfacial Reconstruction and Surface Polarization in a Compact ZnIn2S4-CdIn2S4 Heterojunction for Enhanced Photocatalytic H2O2 Production
    Liu, Yunxia
    Wu, Yubo
    Liu, Yuhui
    Wang, Yi
    Sun, Xiaomei
    Chen, Peng
    Yin, Shuang-Feng
    ACS CATALYSIS, 2024, 14 (10): : 7726 - 7735
  • [22] S-scheme ZnO/WO3 heterojunction photocatalyst for efficient H2O2 production
    Zicong Jiang
    Bei Cheng
    Yong Zhang
    S.Wageh
    Ahmed A.Al-Ghamdi
    Jiaguo Yu
    Linxi Wang
    JournalofMaterialsScience&Technology, 2022, 124 (29) : 193 - 201
  • [23] Construction of spherical WO3/CdS S-scheme heterojunction for photocatalytic H2O2 production in real seawater
    Wang, Ya-Nan
    Guo, Yaxin
    Peng, Jinsong
    Zhao, Jianwei
    Yang, Lei
    Song, Haiyan
    Chen, Chunxia
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (01):
  • [24] Construction of ZnIn2S4/CdS/PdS S-Scheme Heterostructure for Efficient Photocatalytic H2 Production
    Sun, Guotai
    Tai, Zige
    Li, Fan
    Ye, Qian
    Wang, Ting
    Fang, Zhiyu
    Jia, Lichao
    Liu, Wei
    Wang, Hongqiang
    SMALL, 2023, 19 (27)
  • [25] ZnWO4-Zn In2S4 S-scheme heterojunction for enhanced photocatalytic H2 evolution
    Meng Dai
    Zuoli He
    Peng Zhang
    Xin Li
    Shuguang Wang
    JournalofMaterialsScience&Technology, 2022, 122 (27) : 231 - 242
  • [26] Visible-Light-Driven Photocatalytic H2 Production from H2O Boosted by Hydroxyl Groups on Alumina
    Zhao, Binran
    Wang, Xujun
    Liu, Peng
    Zhao, Yiyi
    Men, Yu-Long
    Pan, Yun-Xiang
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (20) : 6845 - 6858
  • [27] Nickel porphyrin/ZnIn2S4 heterojunction with Ni-S highway for boosting charge separation and visible-light-driven H2 production
    Jia H.
    Shao X.
    Wang Y.
    Zhang J.
    Li R.
    Peng T.
    Applied Catalysis B: Environmental, 2024, 353
  • [28] Dual electron transfer path and LSPR photothermal enhancement in BiOCl@ZnIn2S4 heterojunction for enhanced photocatalytic H2 evolution, H2O2 production and tetracycline removal
    Wu, Fan
    Wu, Guangyu
    Tang, Yonggong
    Pan, Yuwei
    Han, Jiangang
    Zhang, Jin
    Xing, Weinan
    Huang, Yudong
    INORGANIC CHEMISTRY FRONTIERS, 2025, 12 (03): : 1200 - 1213
  • [29] Optimal Architecture of a Dual S-Scheme ZnIn2S4-ZnO-Al2O3 Heterosystem with High H2 Evolution Rate under Visible Light
    Ahmad, Irshad
    Shukrullah, Shazia
    Hussain, Humaira
    Naz, Muhammad Yasin
    Irfan, Muhammad
    Alyahyawy, Othman
    Al Thagafi, Morooj A.
    ACS OMEGA, 2023, 8 (29): : 26065 - 26078
  • [30] Oxygen vacancy-enhanced Mn3O4/PbTiO3 S-scheme heterostructures for visible-light-driven photocatalytic CO2 reduction by H2O
    Wang, Ping
    Wu, Qiong
    Liang, Jun
    Feng, Xiaoyan
    Wang, Qiang
    Li, Li
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1021