Diversified random forests using random subspaces

被引:0
|
作者
Fawagreh, Khaled [1 ]
Gaber, Mohamed Medhat [1 ]
Elyan, Eyad [1 ]
机构
[1] IDEAS, School of Computing Science and Digital Medial, Robert Gordon University, Garthdee Road, Aberdeen,AB10 7GJ, United Kingdom
关键词
27;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:85 / 92
相关论文
共 50 条
  • [31] Conformal prediction using random survival forests
    Bostrom, Henrik
    Asker, Lars
    Gurung, Ram
    Karlsson, Isak
    Lindgren, Tony
    Papapetrou, Panagiotis
    2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2017, : 812 - 817
  • [32] LANGUAGE MODEL ADAPTATION USING RANDOM FORESTS
    Deoras, Anoop
    Jelinek, Frederick
    Su, Yi
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 5198 - 5201
  • [33] Using Random Forests for handwritten digit recognition
    Bernard, Simon
    Heutte, Laurent
    Adam, Sebastien
    ICDAR 2007: NINTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS I AND II, PROCEEDINGS, 2007, : 1043 - 1047
  • [34] Prediction of glycosylation sites using random forests
    Hamby, Stephen E.
    Hirst, Jonathan D.
    BMC BIOINFORMATICS, 2008, 9 (1)
  • [35] AUDITORY CONTEXT CLASSIFICATION USING RANDOM FORESTS
    Yang, Li
    Su, Feng
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 2349 - 2352
  • [36] Using random forests to diagnose aviation turbulence
    Williams, John K.
    MACHINE LEARNING, 2014, 95 (01) : 51 - 70
  • [37] Phishing Detection using RDF and Random Forests
    Muppavarapu, Vamsee
    Rajendran, Archanaa
    Vasudevan, Shriram
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2018, 15 (05) : 817 - 824
  • [38] Predicting incident duration using random forests
    Hamad, Khaled
    Al-Ruzouq, Rami
    Zeiada, Waleed
    Abu Dabous, Saleh
    Khalil, Mohamad Ali
    TRANSPORTMETRICA A-TRANSPORT SCIENCE, 2020, 16 (03) : 1269 - 1293
  • [39] Prediction of glycosylation sites using random forests
    Stephen E Hamby
    Jonathan D Hirst
    BMC Bioinformatics, 9
  • [40] Efficient Venn predictors using random forests
    Johansson, Ulf
    Lofstrom, Tuve
    Linusson, Henrik
    Bostrom, Henrik
    MACHINE LEARNING, 2019, 108 (03) : 535 - 550