Challenges and opportunities in Machine learning for bioenergy crop yield Prediction: A review

被引:1
|
作者
Dayil, Joseph Lepnaan [1 ]
Akande, Olugbenga [2 ]
Mahmoud, Alaa El Din [3 ,4 ]
Kimera, Richard [1 ]
Omole, Olakunle [1 ]
机构
[1] Handong Global Univ, Dept Adv Convergence, 558 Handong Ro, Pohang 37554, South Korea
[2] Handong Global Univ, Dept Comp Sci & Elect Engn, 558 Handong Ro, Pohang 37554, South Korea
[3] Alexandria Univ, Fac Sci, Environm Sci Dept, Alexandria 21511, Egypt
[4] Alexandria Univ, Fac Sci, Green Technol Grp, Alexandria 21511, Egypt
关键词
Renewable Energy; Artificial Intelligence (AI); Machine Learning (ML); Crop Yield Prediction; Sustainable Energy; Random Forests; Neural Networks; Predictive Analytics; ARTIFICIAL NEURAL-NETWORKS; ECOSYSTEM SERVICES; ENERGY CROPS; MODELS; AGRICULTURE; LAND; REGRESSION; DESIGN; BIOGAS; CORN;
D O I
10.1016/j.seta.2024.104057
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Bioenergy offers a sustainable alternative to fossil fuels, addressing energy security and climate change concerns. This paper reviews the current landscape of machine learning (ML) applications in predicting bioenergy crop yields. It explores the potential of ML models, such as random forests, support vector machines, and neural networks, to improve yield predictions by analyzing complex agricultural datasets, including soil quality, weather conditions, and crop characteristics. The review highlights the challenges of implementing ML in bioenergy systems, such as data limitations, model interpretability, and scalability. Key findings indicate that integrating ML with traditional agricultural practices can optimize resource allocation, enhance yield predictions, and promote more sustainable bioenergy production. The paper also discusses future research directions for improving ML techniques to advance bioenergy crop yield prediction and sustainability.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Statistical and machine learning methods for crop yield prediction in the context of precision agriculture
    Hannah Burdett
    Christopher Wellen
    Precision Agriculture, 2022, 23 : 1553 - 1574
  • [42] Energy crop yield simulation and prediction system based on machine learning algorithm
    Zhang, Jie
    Liu, Zhidong
    TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 2023, 47 (06) : 972 - 982
  • [43] Analysis of agricultural crop yield prediction using statistical techniques of machine learning
    Pant, Janmejay
    Pant, R. P.
    Singh, Manoj Kumar
    Singh, Devesh Pratap
    Pant, Himanshu
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 10922 - 10926
  • [44] Crop yield prediction: two-tiered machine learning model approach
    Shidnal S.
    Latte M.V.
    Kapoor A.
    International Journal of Information Technology, 2021, 13 (5) : 1983 - 1991
  • [45] Statistical and machine learning methods for crop yield prediction in the context of precision agriculture
    Burdett, Hannah
    Wellen, Christopher
    PRECISION AGRICULTURE, 2022, 23 (05) : 1553 - 1574
  • [46] Intelligent Crop Recommender System for Yield Prediction Using Machine Learning Strategy
    Maheswary A.
    Nagendram S.
    Kiran K.U.
    Ahammad S.H.
    Priya P.P.
    Hossain M.A.
    Rashed A.N.Z.
    Journal of The Institution of Engineers (India): Series B, 2024, 105 (04) : 979 - 987
  • [47] Integrating Crop Modeling and Machine Learning for the Improved Prediction of Dryland Wheat Yield
    Li, Zhiyang
    Nie, Zhigang
    Li, Guang
    AGRONOMY-BASEL, 2024, 14 (04):
  • [48] Grain Crop Yield Prediction Using Machine Learning Based on UAV Remote Sensing: A Systematic Literature Review
    Yuan, Jianghao
    Zhang, Yangliang
    Zheng, Zuojun
    Yao, Wei
    Wang, Wensheng
    Guo, Leifeng
    DRONES, 2024, 8 (10)
  • [49] Challenges and opportunities in quantum machine learning
    M. Cerezo
    Guillaume Verdon
    Hsin-Yuan Huang
    Lukasz Cincio
    Patrick J. Coles
    Nature Computational Science, 2022, 2 : 567 - 576
  • [50] Challenges and opportunities in quantum machine learning
    Cerezo, M.
    Verdon, Guillaume
    Huang, Hsin-Yuan
    Cincio, Lukasz
    Coles, Patrick J.
    NATURE COMPUTATIONAL SCIENCE, 2022, 2 (09): : 567 - 576