Leveraging graph-based learning for credit card fraud detection: a comparative study of classical, deep learning and graph-based approaches

被引:0
|
作者
Harish, Sunisha [1 ]
Lakhanpal, Chirag [1 ]
Jafari, Amir Hossein [1 ]
机构
[1] Department of Data Science, The George Washington University, Washington,DC,20052, United States
关键词
Adversarial machine learning - Contrastive Learning - Convolutional neural networks - Crime - Deep neural networks - Federated learning - Network theory (graphs);
D O I
10.1007/s00521-024-10397-7
中图分类号
学科分类号
摘要
Credit card fraud results in staggering financial losses amounting to billions of dollars annually, impacting both merchants and consumers. In light of the escalating prevalence of digital crime and online fraud, it is important for organizations to implement robust and advanced technology to efficiently detect fraud and mitigate the issue. Contemporary solutions heavily rely on classical machine learning (ML) and deep learning (DL) methods to handle such tasks. While these methods have been effective in many aspects of fraud detection, they may not always be sufficient for credit card fraud detection as they aren’t adaptable to detect complex relationships when it comes to transactions. Fraudsters, for example, might set up many coordinated accounts to avoid triggering limitations on individual accounts. In the context of fraud detection, the ability of Graph Neural Networks (GNN’s) to aggregate information contained within the local neighbourhood of a transaction enables them to identify larger patterns that may be missed by just looking at a single transaction. In this research, we conduct a thorough analysis to evaluate the effectiveness of GNNs in improving fraud detection over classical ML and DL methods. We first build an heterogeneous graph architecture with the source, transaction, and destination as our nodes. Next, we leverage Relational Graph Convolutional Network (RGCN) to learn the representations of nodes in our graph and perform node classification on the transaction node. Our experimental results demonstrate that GNN’s outperform classical ML and DL methods. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.
引用
收藏
页码:21873 / 21883
页数:10
相关论文
共 50 条
  • [31] Graph-based Fuzz Testing for Deep Learning Inference Engines
    Luo, Weisi
    Chai, Dong
    Run, Xiaoyue
    Wang, Jiang
    Fang, Chunrong
    Chen, Zhenyu
    2021 IEEE/ACM 43RD INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2021), 2021, : 288 - 299
  • [32] Synchrophasor Recovery and Prediction: A Graph-Based Deep Learning Approach
    Yu, James J. Q.
    Hill, David J.
    Li, Victor O. K.
    Hou, Yunhe
    IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (05) : 7348 - 7359
  • [33] kGCN: a graph-based deep learning framework for chemical structures
    Kojima, Ryosuke
    Ishida, Shoichi
    Ohta, Masateru
    Iwata, Hiroaki
    Honma, Teruki
    Okuno, Yasushi
    JOURNAL OF CHEMINFORMATICS, 2020, 12 (01)
  • [34] kGCN: a graph-based deep learning framework for chemical structures
    Ryosuke Kojima
    Shoichi Ishida
    Masateru Ohta
    Hiroaki Iwata
    Teruki Honma
    Yasushi Okuno
    Journal of Cheminformatics, 12
  • [35] Graph-based rank aggregation: a deep-learning approach
    Keyhanipour, Amir Hosein
    INTERNATIONAL JOURNAL OF WEB INFORMATION SYSTEMS, 2025, 21 (01) : 54 - 76
  • [36] Asymmetric Graph-Based Deep Reinforcement Learning for Portfolio Optimization
    Sun, Haoyu
    Liu, Xin
    Bian, Yuxuan
    Zhu, Peng
    Cheng, Dawei
    Liang, Yuqi
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES-APPLIED DATA SCIENCE TRACK, PT IX, ECML PKDD 2024, 2024, 14949 : 174 - 189
  • [37] Credit Card Fraud Detection Based on Machine and Deep Learning
    Najadat, Hassan
    Altiti, Ola
    Abu Aqouleh, Ayah
    Younes, Mutaz
    2020 11TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2020, : 204 - 208
  • [38] Two Step Graph-Based Semi-supervised Learning for Online Auction Fraud Detection
    Bangcharoensap, Phiradet
    Kobayashi, Hayato
    Shimizu, Nobuyuki
    Yamauchi, Satoshi
    Murata, Tsuyoshi
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III, 2015, 9286 : 165 - 179
  • [39] Botnet Detection Approach Using Graph-Based Machine Learning
    Alharbi, Afnan
    Alsubhi, Khalid
    IEEE ACCESS, 2021, 9 (09): : 99166 - 99180
  • [40] BotChase: Graph-Based Bot Detection Using Machine Learning
    Abou Daya, Abbas
    Salahuddin, Mohammad A.
    Limam, Noura
    Boutaba, Raouf
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020, 17 (01): : 15 - 29