On feasibility of direct numerical simulation of channel flow based on LBM (lattice boltzmann method)

被引:0
|
作者
Wang, Long [1 ]
Song, Wenping [1 ]
机构
[1] National Key Laboratory of Science and Technology on Aerodynamic Design and Research, Northwestern Polytechnical University, Xi'an 710072, China
关键词
Numerical methods - Direct numerical simulation - Numerical models - Reynolds number - Boundary layers - Kinetic theory - Turbulent flow - Wall flow - Channel flow - Stress analysis - Spectroscopy - Velocity;
D O I
暂无
中图分类号
学科分类号
摘要
Aim: The introduction of the full paper reviews Refs. 1, 2 and 3 and then proposes exploring the feasibility of direct numerical simulation; the answer, we believe, is affirmative according to our presentation in sections 1, 2 and 3. Their core is that the numerical simulation results of the boundary layer velocity profile, the mean square root velocity, the Reynolds stress profile and the energy spectrum in the central channel zone display satisfactory agreements respectively with the Kim, Moin and Moser's classical results in Ref. 5; their corresponding figures are: Fig. 4 (the boundary layer velocity profile), Fig. 5 (the mean square root velocity), Fig. 6 (the Reynolds stress profile) and Fig. 7 (the energy spectrum in the central channel zone). The agreements indicate preliminarily that the LBM can indeed predict the evolution of boundary layer and the effect of wind tunnel wall on flow, thus demonstrating that the LBM can be applied to the correction of wind tunnel wall interference.
引用
收藏
页码:520 / 523
相关论文
共 50 条
  • [21] Numerical simulation of the flow around a porous covering square cylinder in a channel via lattice Boltzmann method
    Rong, F. M.
    Guo, Z. L.
    Lu, J. H.
    Shi, B. C.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (10) : 1217 - 1230
  • [22] Two-dimensional numerical simulation of channel flow with submerged obstacles using the lattice Boltzmann method
    Cargnelutti, J.
    Galina, V.
    Kaviski, E.
    Gramani, L. M.
    Lobeiro, A. M.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2018, 34 (01):
  • [23] DIRECT NUMERICAL SIMULATION OF TURBULENT FLOW AND AEROACOUSTIC FIELDS AROUND AN AIRFOIL USING LATTICE BOLTZMANN METHOD
    Kusano, Kazuya
    Yamada, Kazutoyo
    Furukawa, Masato
    Moon, Kil-Ju
    PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER MEETING, 2016, VOL 1A, 2016,
  • [24] Numerical Simulation of Electroosmotic Flow in Flat Microchannels with Lattice Boltzmann Method
    Omid Reza Mohammadipoor
    Hamid Niazmand
    Seyed Ali Mirbozorgi
    Arabian Journal for Science and Engineering, 2014, 39 : 1291 - 1302
  • [25] Numerical Simulation of Electroosmotic Flow in Flat Microchannels with Lattice Boltzmann Method
    Mohammadipoor, Omid Reza
    Niazmand, Hamid
    Mirbozorgi, Seyed Ali
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2014, 39 (02) : 1291 - 1302
  • [26] NUMERICAL SIMULATION OF BUBBLE FLOW IN ELECTROCONDUCTING LIQUIDS BY THE LATTICE BOLTZMANN METHOD
    Tatulcenkovs, A.
    Jakovics, A.
    Baake, E.
    Nacke, B.
    MAGNETOHYDRODYNAMICS, 2017, 53 (02): : 281 - 288
  • [27] Numerical Simulation of Flow Around Obstacles Using Lattice Boltzmann Method
    Benamour, M.
    Liberge, E.
    Beghein, C.
    Hamdouni, A.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [28] Numerical investigation of artificial bubble flow in micro-channel based on Lattice Boltzmann method
    Dong, Zhi-Qiang
    Xu, Jin-Liang
    Jiang, Fang-Ming
    Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics, 2012, 29 (02): : 262 - 266
  • [29] Numerical simulation of advancing interface in a micro heterogeneous channel by the lattice Boltzmann method
    Kobayashi, K
    Inamuro, T
    Ogino, F
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2006, 39 (03) : 257 - 266
  • [30] Numerical simulation of direct methanol fuel cells using lattice Boltzmann method
    Delavar, Mojtaba Aghajani
    Farhadi, Mousa
    Sedighi, Kurosh
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (17) : 9306 - 9317