Coordinated Grid-Forming Control Strategy for VSC-HVDC Integrating Offshore Wind Farms Based on Hybrid Energy

被引:0
|
作者
Zhu, Ying [1 ]
Wang, Zhili [1 ]
Li, Bin [1 ]
机构
[1] Hohai Univ, Sch Elect & Power Engn, Nanjing 210098, Peoples R China
基金
中国国家自然科学基金;
关键词
Capacitors; Wind farms; Frequency control; Rotors; Voltage control; Converters; Kinetic energy; Coordinated control strategy; decoupling control; grid-forming (GFM) control; rotor kinetic energy; secondary frequency drop; supercapacitor (SC); VSC-HVDC integrating offshore wind farms;
D O I
10.1109/JESTIE.2024.3394478
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For integrating large-scale offshore wind farm system more effectively, issues as insufficient inertia energy and dc voltage variation caused by traditional grid-forming (GFM) control in voltage source converter based HVDC (VSC-HVDC) have to be settled urgently. This article proposes an improved coordinated GFM control strategy based on hybrid energy to improve grid frequency and dc voltage stability. In terms of grid-side VSC control, an improved virtual inertia control method consisting of additional capacitor structure and matching GFM control is proposed, which can decouple dc voltage and energy of dc capacitor in VSC-HVDC. By establishing coupling relationship between additional capacitor energy and grid frequency, the matching GFM control can fully utilize its energy and provide better inertia support. In terms of wind farm control, a three-stage coordinated control based on hybrid energy is designed. During stage1 and stage2, fast inertial support and primary frequency regulation are achieved through rotor kinetic energy. The supercapacitor is controlled to quickly increase or decrease active power to suppress sudden output power change caused by exiting rotor kinetic energy control in stage3. Finally, a comparative simulation is performed using MATLAB/Simulink to verify the effectiveness and advantages of the proposed strategy.
引用
收藏
页码:1350 / 1361
页数:12
相关论文
共 50 条
  • [21] A VSG Variable Parameter Load Frequency Control Strategy for Wind Farms Connected to the Grid by VSC-HVDC
    Zhao X.
    Gong C.
    Fu B.
    Gaodianya Jishu/High Voltage Engineering, 2024, 50 (01): : 117 - 126
  • [22] Fault Ride Through and Grid Support Topology for the VSC-HVDC Connected Offshore Wind Farms
    Kirakosyan, Aram
    El Moursi, Mohamed Shawky
    Khadkikar, Vinod
    IEEE TRANSACTIONS ON POWER DELIVERY, 2017, 32 (03) : 1592 - 1604
  • [23] Integrating black start capabilities into offshore wind farms by grid-forming batteries
    Pagnani, Daniela
    Kocewiak, Lukasz
    Hjerrild, Jesper
    Blaabjerg, Frede
    Bak, Claus Leth
    IET RENEWABLE POWER GENERATION, 2023, 17 (14) : 3523 - 3535
  • [24] Droop control-based fast frequency support of wind power generation integrated grid-forming VSC-HVDC system
    Chen, Qian
    Shi, Gang
    Lu, Yi
    Qiu, Peng
    Zhou, Jianqiao
    Yang, Renxin
    Zhang, Jianwen
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [25] The DFIG Wind Farms and VSC-HVDC Sending End Station Coordinated Control Research
    Meng, Yuan
    Wang, Zhou
    2015 INTERNATIONAL CONFERENCE ON NEW ENERGY SCIENCE AND RESEARCH (ICESR 2015), 2015, : 323 - 330
  • [26] Design and Control of Multi-terminal VSC-HVDC for Large Offshore Wind Farms
    Shi, Gang
    Cai, Xu
    Chen, Zhe
    PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (12A): : 264 - 268
  • [27] Generator response following as a primary frequency response control strategy for VSC-HVDC connected offshore wind farms
    McGill, R.
    Torres-Olguin, R.
    Anaya-Lara, O.
    Leithead, W.
    14TH DEEP SEA OFFSHORE WIND R&D CONFERENCE, EERA DEEPWIND'2017, 2017, 137 : 108 - 118
  • [28] Control of VSC-HVDC in AC/DC hybrid transmission with wind farms integrated
    Fan, Xinming, 1600, Chinese Society for Electrical Engineering (34):
  • [29] A Novel Multiterminal VSC-HVdc Transmission Topology for Offshore Wind Farms
    Raza, Ali
    Xu Dianguo
    Su Xunwen
    Li Weixing
    Williams, Barry W.
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2017, 53 (02) : 1316 - 1325
  • [30] Disturbance Observer-based Damping Controller of Grid-forming VSC-HVDC Systems
    Wang W.
    Zhang Y.
    Li S.
    Chen Y.
    Yu J.
    Li C.
    Cao Y.
    Dianwang Jishu/Power System Technology, 2024, 48 (06): : 2262 - 2271