Homologous multimodal fusion network with geometric constraint keypoints selection for 6D pose estimation

被引:0
|
作者
Guo, Yi [1 ]
Wang, Fei [2 ]
Ding, Qichuan [2 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110004, Liaoning, Peoples R China
[2] Northeastern Univ, Fac Robot Sci & Engn, Shenyang 110004, Liaoning, Peoples R China
关键词
6D pose estimation; Homologous multimodal fusion; Rotation-invariant; Geometric constraint; Visual grasp; ROBUST; DEPTH;
D O I
10.1016/j.eswa.2024.126022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Estimating the 6D pose of objects from RGB-D images is a fundamental problem in computer vision, with the primary challenge lying ineffectively fusing these two modalities of information: color and depth. In this work, we present a novel homologous multimodal fusion framework for 6D pose estimation from RGBD images. Unlike existing methods, our approach directly utilizes homologous RGB-D as input to exploit the innate semantic similarity between them through hierarchical global and local feature fusion. This approach avoids performance loss caused by point cloud transformation. Additionally, we introduce a rotation- invariant residual network and geometric constraint loss for calculating object keypoints, further enhancing the accuracy and robustness of localization. Extensive comparative experiments and ablation studies validate the effectiveness of the proposed method, achieving state-of-the-art performance on the LineMOD (99.9%), Occlusion-LineMOD (79.2%), and YCB-Video datasets (97.1%). Finally, we validate the effectiveness of our method through recognition and grasping experiments in cluttered real-world scenarios. Video is available at https://youtu.be/LS_m4N9b5tU.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] 6D Pose Estimation Network in Complex Point Cloud Scenes
    Chen, Haiyong
    Li, Longteng
    Chen, Peng
    Meng, Rui
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2022, 44 (05): : 1591 - 1601
  • [42] 6D Pose Estimation Network in Complex Point Cloud Scenes
    Chen Haiyong
    Li Longteng
    Chen Peng
    Meng Rui
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2022, 44 (05) : 1591 - 1601
  • [43] Robotic grasping method with 6D pose estimation and point cloud fusion
    Ma, Haofei
    Wang, Gongcheng
    Bai, Hua
    Xia, Zhiyu
    Wang, Weidong
    Du, Zhijiang
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 134 (11-12): : 5603 - 5613
  • [44] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [45] 6D Pose Estimation for Precision Assembly
    Skeik, Ola
    Erden, Mustafa Suphi
    Kong, Xianwen
    2022 IEEE 5TH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING APPLICATIONS AND SYSTEMS, IPAS, 2022,
  • [46] A novel metric for 6D pose estimation
    Niedermaier, Tobias
    Berens, Felix
    Reischl, Markus
    Elser, Stefan
    AT-AUTOMATISIERUNGSTECHNIK, 2025, 73 (02) : 125 - 135
  • [47] GeoPose: Dense Reconstruction Guided 6D Object Pose Estimation With Geometric Consistency
    Wang, Deming
    Zhou, Guangliang
    Yan, Yi
    Chen, Huiyi
    Chen, Qijun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 4394 - 4408
  • [48] Edge Enhanced Implicit Orientation Learning With Geometric Prior for 6D Pose Estimation
    Wen, Yilin
    Pan, Hao
    Yang, Lei
    Wang, Wenping
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (03) : 4931 - 4938
  • [49] HFT6D: Multimodal 6D object pose estimation based on hierarchical feature transformer
    An, Yunnan
    Yang, Dedong
    Song, Mengyuan
    MEASUREMENT, 2024, 224
  • [50] SaMfENet: Self-Attention Based Multi-Scale Feature Fusion Coding and Edge Information Constraint Network for 6D Pose Estimation
    Li, Zhuoxiao
    Li, Xiaobing
    Chen, Shihao
    Du, Jialong
    Li, Yong
    MATHEMATICS, 2022, 10 (19)