Artificial Intelligence-Based Video Saliency Prediction: Challenges and Trends

被引:0
|
作者
Lin, Jiongzhi [1 ]
Huang, Baitao [1 ]
Zhou, Fei [1 ]
机构
[1] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
关键词
Deep learning; Adaptation models; Reviews; Streaming media; Predictive models; Market research; High dynamic range; Intelligent systems; Convergence; Context modeling;
D O I
10.1109/MIS.2024.3482950
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video saliency prediction (VSP) aims to identify regions in videos that attract human attention and gaze. In the past, researchers have conducted extensive studies on VSP, establishing various video saliency datasets and prediction models. Leveraging the powerful end-to-end learning capabilities of deep learning techniques and the availability of large-scale video saliency datasets, the performance of saliency prediction models has significantly improved. Today, with the development of multimedia technologies, the task of VSP has generated numbers of promising directions, such as high dynamic range VSP and audio VSP, among others. This article focuses on the challenges of VSP in the context of multimedia technologies; reviews the research on video saliency, including video saliency datasets and prediction models; and then introduces potential research directions in conjunction with contemporary multimedia technologies.
引用
收藏
页码:86 / 90
页数:5
相关论文
共 50 条
  • [31] Artificial Intelligence-Based Prediction of Cardiovascular Diseases from Chest Radiography
    Farina, Juan M.
    Pereyra, Milagros
    Mahmoud, Ahmed K.
    Scalia, Isabel G.
    Abbas, Mohammed Tiseer
    Chao, Chieh-Ju
    Barry, Timothy
    Ayoub, Chadi
    Banerjee, Imon
    Arsanjani, Reza
    JOURNAL OF IMAGING, 2023, 9 (11)
  • [32] Computational and artificial intelligence-based approaches for drug metabolism and transport prediction
    Dudas, Balint
    Miteva, Maria A.
    TRENDS IN PHARMACOLOGICAL SCIENCES, 2024, 45 (01) : 39 - 55
  • [33] A scoping review of artificial intelligence-based methods for diabetes risk prediction
    Mohsen, Farida
    Al-Absi, Hamada R. H.
    Yousri, Noha A.
    El Hajj, Nady
    Shah, Zubair
    NPJ DIGITAL MEDICINE, 2023, 6 (01)
  • [34] Digitisation of electrocardiographic images enable artificial intelligence-based mortality prediction
    Patlatzoglou, K.
    Sau, A.
    Zeidaabadi, B.
    Pastika, L.
    Peters, N.
    Kramer, D.
    Waks, J.
    Ng, F.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [35] Artificial Intelligence-Based Ensemble Model for Rapid Prediction of Heart Disease
    Harika N.
    Swamy S.R.
    Nilima
    SN Computer Science, 2021, 2 (6)
  • [36] Artificial intelligence-based molecular property prediction of photosensitising effects of drugs
    Hofmann, Amun G.
    Weber, Benedikt
    Ibbotson, Sally
    Agibetov, Asan
    JOURNAL OF DRUG TARGETING, 2025, 33 (04) : 556 - 561
  • [37] Five critical quality criteria for artificial intelligence-based prediction models
    Van Royen, Florien S.
    Asselbergs, Folkert W.
    Alfonso, Fernando
    Vardas, Panos
    Van Smeden, Maarten
    EUROPEAN HEART JOURNAL, 2023, 44 (46) : 4831 - 4834
  • [38] A scoping review of artificial intelligence-based methods for diabetes risk prediction
    Farida Mohsen
    Hamada R. H. Al-Absi
    Noha A. Yousri
    Nady El Hajj
    Zubair Shah
    npj Digital Medicine, 6
  • [39] Critical appraisal of artificial intelligence-based prediction models for cardiovascular disease
    van Smeden, Maarten
    Heinze, Georg
    Van Calster, Ben
    Asselbergs, Folkert W.
    Vardas, Panos E.
    Bruining, Nico
    de Jaegere, Peter
    Moore, Jason H.
    Denaxas, Spiros
    Boulesteix, Anne-Laure
    Moons, Karel G. M.
    EUROPEAN HEART JOURNAL, 2022, 43 (31) : 2921 - 2930
  • [40] A New Artificial Intelligence-Based Model for Amyotrophic Lateral Sclerosis Prediction
    Alzahrani, A. Khuzaim
    Alsheikhy, Ahmed A.
    Shawly, Tawfeeq
    Barr, Mohammad
    Ahmed, Hossam E.
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2023, 2023