MPS2L: Mutual Prediction Self-Supervised Learning for Remote Sensing Image Change Detection

被引:0
|
作者
Wang, Qingwang [1 ,2 ]
Qiu, Yujie [1 ,2 ]
Jin, Pengcheng [1 ,2 ]
Shen, Tao [1 ,2 ]
Gu, Yanfeng [3 ,4 ]
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Peoples R China
[2] Kunming Univ Sci & Technol, Yunnan Key Lab Comp Technol Applicat, Kunming 650500, Peoples R China
[3] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
[4] Heilongjiang Prov Key Lab Space Air Ground Integra, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Transformers; Remote sensing; Training; Decoding; Image reconstruction; Predictive models; Attention mechanism; masked image modeling (MIM); remote sensing (RS) image change detection (CD); self-supervised learning; BUILDING CHANGE DETECTION; TIME-SERIES; CLASSIFICATION; TRANSFORMERS; DATASET; NETWORK;
D O I
10.1109/TGRS.2024.3468008
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this article, we propose a novel mutual prediction self-supervised learning (MPS2L) method for remote sensing (RS) image change detection (CD). Compared with the previous self-supervised CD methods based on contrastive learning (CL), MPS2L employing a pixel-level training strategy based on masked image modeling (MIM) can effectively train the model to interpret the local scene of RS images. Utilizing global and local scenes and temporal change features extracted from masked bitemporal images to achieve cross-temporal mutual prediction makes the model have the ability to understand the overall observation scene and capture the change information. The training of the two abilities is carried out simultaneously, avoiding the problem of multiobjective conflict or mutual inhibition. To better focus on the changing regions in RS scenes, we further introduce a change feature interaction module (CFIM), comprising spatial and channel feature interaction. The channel interaction module (CIM) can facilitate the cross-temporal transmission of global scene information by channel attention, and the spatial interaction module (SIM) can promote the network to capture information on changing regions by spatial attention. The experimental results on three benchmark RS CD datasets demonstrate the effectiveness and priority of our proposed MPS2L compared to some existing state-of-the-art (SOTA) methods. The source code of the proposed MPS2L will be made available publicly at https://github.com/KustTeamWQW/MPS2L.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Self-Supervised Material and Texture Representation Learning for Remote Sensing Tasks
    Akiva, Peri
    Purri, Matthew
    Leotta, Matthew
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8193 - 8205
  • [42] A Hyperspectral Image Change Detection Framework With Self-Supervised Contrastive Learning Pretrained Model
    Ou, Xianfeng
    Liu, Liangzhen
    Tan, Shulun
    Zhang, Guoyun
    Li, Wujing
    Tu, Bing
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15 : 7724 - 7740
  • [43] A SELF-SUPERVISED KEYPOINT DETECTION NETWORK FOR MULTIMODAL REMOTE SENSING IMAGES
    Li, Liangzhi
    Han, Ling
    Cao, Hongye
    Liu, Ming
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 43-B2 : 609 - 615
  • [44] Feature Guided Masked Autoencoder for Self-Supervised Learning in Remote Sensing
    Wang, Yi
    Hernandez, Hugo Hernandez
    Albrecht, Conrad M.
    Zhu, Xiao Xiang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 321 - 336
  • [45] HYPERSPECTRAL IMAGE CHANGE DETECTION BY SELF-SUPERVISED TENSOR NETWORK
    Zhou, Feng
    Chen, Zhao
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2527 - 2530
  • [46] Semi Supervised Change Detection Method of Remote Sensing Image
    Nie, Wei
    Gou, Peng
    Liu, Yang
    Shrestha, Bhaskar
    Zhou, Tianyu
    Xu, Nuo
    Wang, Peng
    Du, Qiqi
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 1013 - 1019
  • [47] Deep supervised network for change detection of remote sensing image
    Yuan X.-P.
    Wang X.-Q.
    He X.
    Hu Y.-M.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (10): : 1966 - 1976
  • [48] TOV: The Original Vision Model for Optical Remote Sensing Image Understanding via Self-Supervised Learning
    Tao, Chao
    Qi, Ji
    Zhang, Guo
    Zhu, Qing
    Lu, Weipeng
    Li, Haifeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 4916 - 4930
  • [49] Self-Supervised Learning on Small In-Domain Datasets Can Overcome Supervised Learning in Remote Sensing
    Sanchez-Fernandez, Andres J.
    Moreno-Alvarez, Sergio
    Antonio Rico-Gallego, Juan
    Tabik, Siham
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 12797 - 12810
  • [50] Self-Supervised GANs With Similarity Loss for Remote Sensing Image Scene Classification
    Guo, Dongen
    Xia, Ying
    Luo, Xiaobo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 (14) : 2508 - 2521