Data-driven control of echo state-based recurrent neural networks with robust stability guarantees

被引:0
|
作者
D'Amico, William [1 ]
La Bella, Alessio [1 ]
Farina, Marcello [1 ]
机构
[1] Politecn Milan, Dipartimento Elettron, Informaz & Bioingn, Via Ponzio 34-5, I-20133 Milan, Italy
关键词
Recurrent neural networks; Linear matrix inequalities; Data-based control; CONTROL DESIGN; SYSTEMS;
D O I
10.1016/j.sysconle.2024.105974
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work we propose a new data-based approach for robust controller design for a rather general class of recurrent neural networks affected by bounded measurement noise. We first identify the model set compatible with available data in a selected model class via set membership (SM). Then, incremental input-to-state stability and desired performances for the closed loop system are enforced robustly to all models in the identified model set via a linear matrix inequality (LMI) optimization problem. Numerical results show the effectiveness of the comprehensive method.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Data-driven control of complex networks
    Baggio, Giacomo
    Bassett, Danielle S.
    Pasqualetti, Fabio
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [32] Data-driven Adaptive Robust Control of a CSTR
    Nabati, Ehsan Gholamzadeh
    Engell, Sebastian
    2012 16TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE (MELECON), 2012, : 946 - 949
  • [33] DATA-DRIVEN FIBER TRACTOGRAPHY WITH NEURAL NETWORKS
    Wegmayr, Viktor
    Giuliari, Giacomo
    Holdener, Stefan
    Buhmann, Joachim
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1030 - 1033
  • [34] Data-Driven Distributionally Robust Optimal Control with State-Dependent Noise
    Liu, Rui
    Shi, Guangyao
    Tokekar, Pratap
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 9986 - 9991
  • [35] Robust local stability of multilayer recurrent neural networks
    Suykens, JAK
    De Moor, B
    Vandewalle, J
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (01): : 222 - 229
  • [36] Global robust stability of delayed recurrent neural networks
    Cao, JD
    Huang, DS
    Qu, YZ
    CHAOS SOLITONS & FRACTALS, 2005, 23 (01) : 221 - 229
  • [37] State-based confidence bounds for data-driven stochastic reachability using Hilbert space embeddings
    Thorpe, Adam J.
    Ortiz, Kendric R.
    Oishi, Meeko M. K.
    AUTOMATICA, 2022, 138
  • [38] A Survey on Data-Driven Runoff Forecasting Models Based on Neural Networks
    Sheng, Ziyu
    Wen, Shiping
    Feng, Zhong-kai
    Gong, Jiaqi
    Shi, Kaibo
    Guo, Zhenyuan
    Yang, Yin
    Huang, Tingwen
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (04): : 1083 - 1097
  • [39] LMI-based Data-Driven Robust Model Predictive Control
    Hoang Hai Nguyen
    Friedel, Maurice
    Findeisen, Rolf
    IFAC PAPERSONLINE, 2023, 56 (02): : 4783 - 4788
  • [40] Physics-guided neural networks for feedforward control with input-to-state-stability guarantees
    Bolderman, Max
    Butler, Hans
    Koekebakker, Sjirk
    van Horssen, Eelco
    Kamidi, Ramidin
    Spaan-Burke, Theresa
    Strijbosch, Nard
    Lazar, Mircea
    CONTROL ENGINEERING PRACTICE, 2024, 145