Hierarchical collaboration for referring image segmentation

被引:0
|
作者
Zhang, Wei [1 ,2 ]
Cheng, Zesen [3 ]
Chen, Jie [2 ,3 ]
Gao, Wen [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen 518055, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518000, Peoples R China
[3] Peking Univ, Sch Elect & Comp Engn, Shenzhen 518055, Peoples R China
基金
国家重点研发计划;
关键词
Referring image segmentation; Image understanding; Cross-modal;
D O I
10.1016/j.neucom.2024.128632
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the field of referring segmentation, top-down methods and bottom-up methods are the two prevailing approaches. Both of these methods inevitably exhibit certain drawbacks. Top-down methods are susceptible to Polar Negative (PN) errors due to their limited understanding of multi-modal fine-grained features. Bottom-up methods lack macro-level object positional information, making them susceptible to Inferior Positive (IP) errors. However, we find that the two approaches are highly complementary in addressing their respective weaknesses, but combining them directly through a simple average does not yield complementary advantages. Therefore, we proposed a hierarchical collaboration approach to explore the complementary characteristics of the existing two methods from the perspectives of fusion and interaction, aiming to achieve more precise segmentation results. We proposed the Complementary Feature Interaction (CFI) module, which enables top-down methods to access fine-grained information and allows bottom-up approaches to obtain object positional information interactively. Regarding integration, Gaussian Scoring Integration (GSI) models the Gaussian performance distributions of two branches and performs weighted integration by sampling confidence scores from these distributions. We integrate various top-down and bottom-up methods within the proposed architecture and conduct experiments on three standard datasets. The experimental results demonstrate that our method outperforms the state-of-theart independent segmentation algorithms. On the RefCOCO validation, test A and test B datasets, our proposed method achieved IoU scores of 77.51, 79.12, and 72.79, respectively. Extensive experiments demonstrate that our method can significantly improve segmentation accuracy when fusing different sub-methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Dual Convolutional LSTM Network for Referring Image Segmentation
    Ye, Linwei
    Liu, Zhi
    Wang, Yang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (12) : 3224 - 3235
  • [22] A survey of methods for addressing the challenges of referring image segmentation
    Ji, Lixia
    Du, Yunlong
    Dang, Yiping
    Gao, Wenzhao
    Zhang, Han
    NEUROCOMPUTING, 2024, 583
  • [23] Locate then Segment: A Strong Pipeline for Referring Image Segmentation
    Jing, Ya
    Kong, Tao
    Wang, Wei
    Wang, Liang
    Li, Lei
    Tan, Tieniu
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9853 - 9862
  • [24] Learning From Box Annotations for Referring Image Segmentation
    Feng, Guang
    Zhang, Lihe
    Hu, Zhiwei
    Lu, Huchuan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (03) : 3927 - 3937
  • [25] CARIS: Context-Aware Referring Image Segmentation
    Liu, Sun-Ao
    Zhang, Yiheng
    Qiu, Zhaofan
    Xie, Hongtao
    Zhang, Yongdong
    Yao, Ting
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 779 - 788
  • [26] Query Reconstruction Network for Referring Expression Image Segmentation
    Shi, Hengcan
    Li, Hongliang
    Wu, Qingbo
    Ngan, King Ngi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 995 - 1007
  • [27] PRNet: A Progressive Refinement Network for referring image segmentation
    Liu, Jing
    Jiang, Huajie
    Hu, Yongli
    Yin, Baocai
    NEUROCOMPUTING, 2025, 630
  • [28] A CONTEXT-BASED NETWORK FOR REFERRING IMAGE SEGMENTATION
    Li, Xinyu
    Liu, Yu
    Xu, Kaiping
    Zhao, Zhehuan
    Liu, Sipei
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1436 - 1440
  • [29] Advancing Referring Expression Segmentation Beyond Single Image
    Wu, Yixuan
    Zhang, Zhao
    Xie, Chi
    Zhu, Feng
    Zhao, Rui
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 2628 - 2638
  • [30] Referring Image Segmentation via Recurrent Refinement Networks
    Li, Ruiyu
    Li, Kaican
    Kuo, Yi-Chun
    Shu, Michelle
    Qi, Xiaojuan
    Shen, Xiaoyong
    Jia, Jiaya
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5745 - 5753