Numerical study of heat transfer and fluid flow in a symmetric wavy microchannel heat sink reinforced by slanted secondary channels

被引:3
|
作者
Zhu, Qifeng [1 ]
Liu, Xianyao [1 ]
Zeng, Jingwei [1 ]
Zhao, He [1 ]
He, Wenqiang [1 ]
Deng, Haoxin [1 ]
Chen, Guoyan [1 ]
机构
[1] Henan Polytech Univ, Sch Mech & Power Engn, Jiaozuo, Peoples R China
关键词
Wavy microchannel heat sink; Secondary channel; Numerical simulations; Entropy generation; Heat transfer enhancement; SHAPED REENTRANT CAVITIES; THERMAL ENHANCEMENT; ENTROPY GENERATION; COOLING SYSTEM; PERFORMANCE; EXCHANGER; ELECTRONICS; SIMULATION; NANOFLUIDS; PARAMETERS;
D O I
10.1016/j.csite.2024.105605
中图分类号
O414.1 [热力学];
学科分类号
摘要
To improve the thermal and hydraulic performance of symmetric wavy microchannel heat sinks, a novel design has been devised with slanted secondary channels from trough to crest based on its pressure distribution characteristics. These channels connect regions of adverse pressure gradient in any two neighboring channels to form a novel microchannel heat sink (SW-TC). Employing three-dimensional numerical simulations, a comparative analysis was performed on the flow and heat transfer characteristics among the SW-TC, the symmetric wavy microchannel with wave crest-to-crest secondary flow channels (SW-CC), and the symmetric wavy microchannel with wave trough-to-trough secondary channels (SW-TT). The results indicate that the design of slanted secondary channels significantly improves fluid mixing across channels, suppresses boundary layer development, and consequently enhances the heat transfer efficiency and overall performance of the SW-TC. The SW-TC achieves its peak relative Nusselt number and overall performance factor at 1.835 and 1.843, respectively. Furthermore, the SW-TC exhibits excellent temperature uniformity across the heating wall, and its temperature increase along the flow direction is a mere 8.3 K at Re = 200. It also presents the lowest entropy generation number among all designs, reaching 0.56 at Re = 100.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Heat transfer enhancement of symmetric and parallel wavy microchannel heat sinks with secondary branch design
    Wang, Shuo-Lin
    Zhu, Ji-Feng
    An, Di
    Zhang, Ben-Xi
    Chen, Liu-Yi
    Yang, Yan-Ru
    Zheng, Shao-Fei
    Wang, Xiao-Dong
    International Journal of Thermal Sciences, 2022, 171
  • [22] Heat transfer enhancement of symmetric and parallel wavy microchannel heat sinks with secondary branch design
    Wang, Shuo-Lin
    Zhu, Ji-Feng
    An, Di
    Zhang, Ben-Xi
    Chen, Liu-Yi
    Yang, Yan-Ru
    Zheng, Shao-Fei
    Wang, Xiao-Dong
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2022, 171
  • [23] Microchannel heat sink with microstructured wall - A critical study on fluid flow and heat transfer characteristics
    Rajalingam, A.
    Chakraborty, Shubhankar
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2023, 38
  • [24] Numerical investigation of flow dynamics and heat transfer characteristics in a microchannel heat sink
    Emran, Md.
    Islam, Mohammad Ariful
    10TH INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING (ICME 2013), 2014, 90 : 563 - 568
  • [25] Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls
    Chai, Lei
    Xia, Guo Dong
    Wang, Hua Sheng
    APPLIED THERMAL ENGINEERING, 2016, 92 : 32 - 41
  • [26] Numerical study of heat transfer and fluid flow in a periodically wavy channel
    State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
    Jisuan Wuli, 2006, 1 (93-97):
  • [27] Study on flow and heat transfer of liquid metal in the microchannel heat sink
    Chen, Zhiwei
    Qian, Peng
    Huang, Zizhen
    Zhang, Wenjing
    Liu, Minghou
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2023, 183
  • [28] Heat transfer and flow characteristics in symmetric and parallel wavy microchannel heat sinks with porous ribs
    Wang, Shuo-Lin
    An, Di
    Yang, Yan-Ru
    Zheng, Shao-Fei
    Wang, Xiao-Dong
    Lee, Duu-Jong
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2023, 185
  • [29] Numerical study on the pulsating effect on heat transfer performance of pseudo-plastic fluid flow in a manifold microchannel heat sink
    Zhang, Hongna
    Li, Sining
    Cheng, Jianping
    Zheng, Zhiying
    Li, Xiaobin
    Li, Fengchen
    APPLIED THERMAL ENGINEERING, 2018, 129 : 1092 - 1105
  • [30] A comprehensive study on heat transfer enhancement in microchannel heat sink with secondary channel
    Japar, Wan Mohd Arif Aziz
    Sidik, Nor Azwadi Che
    Mat, Shabudin
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2018, 99 : 62 - 81