Identifying influential nodes in complex networks through the k-shell index and neighborhood information

被引:2
|
作者
Esfandiari, Shima [1 ]
Moosavi, Mohammad Reza [1 ]
机构
[1] Shiraz Univ, Sch Elect & Comp Engn, Dept Comp Sci & Engn & IT, Shiraz, Iran
关键词
Complex networks analysis; Ranking method; Influential nodes; K-shell extension; RANKING; SPREADERS; IDENTIFICATION; IMMUNIZATION; CENTRALITY;
D O I
10.1016/j.jocs.2024.102473
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Identifying influential nodes is crucial in network science for controlling diseases, sharing information, and viral marketing. Current methods for finding vital spreaders have problems with accuracy, resolution, or time complexity. To address these limitations, this paper presents a hybrid approach called the Bubble Method (BM). First, the BM assumes a bubble with a radius of two surrounding each node. Then, it extracts various attributes from inside and near the surface of the bubble. These attributes are the k-shell index, k-shell diversity, and the distances of nodes within the bubble from the central node. We compared our method to 12 recent ones, including the Hybrid Global Structure model (HGSM) and Generalized Degree Decomposition (GDD), using the Susceptible-Infectious-Recovered (SIR) model to test its effectiveness. The results show the BM outperforms other methods in terms of accuracy, correctness, and resolution. Its low computational complexity renders it highly suitable for analyzing large-scale networks.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] A new evidential methodology of identifying influential nodes in complex networks
    Bian, Tian
    Deng, Yong
    CHAOS SOLITONS & FRACTALS, 2017, 103 : 101 - 110
  • [42] A neural diffusion model for identifying influential nodes in complex networks
    Ahmad, Waseem
    Wang, Bang
    CHAOS SOLITONS & FRACTALS, 2024, 189
  • [43] Identifying influential nodes in complex networks based on expansion factor
    Liu, Dong
    Jing, Yun
    Chang, Baofang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2016, 27 (09):
  • [44] Identifying influential nodes in complex networks from global perspective
    Zhao, Jie
    Wang, Yunchuan
    Deng, Yong
    CHAOS SOLITONS & FRACTALS, 2020, 133
  • [45] Identifying influential nodes in complex networks based on spreading probability
    Ai, Jun
    He, Tao
    Su, Zhan
    Shang, Lihui
    CHAOS SOLITONS & FRACTALS, 2022, 164
  • [46] Identifying influential nodes in Social Networks: Neighborhood Coreness based voting approach
    Kumar, Sanjay
    Panda, B. S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 553
  • [47] Identifying influential nodes in complex networks based on Neighbours and edges
    Zengzhen Shao
    Shulei Liu
    Yanyu Zhao
    Yanxiu Liu
    Peer-to-Peer Networking and Applications, 2019, 12 : 1528 - 1537
  • [48] A Method for Identifying Key Nodes Based on an Improved K-shell Algorithm
    Xiao, Nan
    Ye, Wenjie
    Yu, Lin
    Lu, Dong
    Zhang, Jie
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKS AND INTERNET OF THINGS, CNIOT 2024, 2024, : 411 - 414
  • [49] A K-shell Improved Method for the Importance of Complex Network Nodes
    Xing Jianmin
    Chen Jianqiang
    Sun Xiuwen
    Zhang Xinli
    Zhang Ruikun
    PROCEEDINGS OF 2018 IEEE 7TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS), 2018, : 639 - 643
  • [50] A new edge weight-based measure for k-shell influential node identification in complex networks
    Xiong Y.
    Cheng Y.
    International Journal of Security and Networks, 2024, 19 (01) : 1 - 9